The origin of underdense plasma downflows associated with magnetic reconnection in solar flares
Forbes, T. G. & Acton, L. W. Reconnection and field line shrinkage in solar flares. Astrophys. J. 459, 330–341 (1996).
Haggerty, C. C. et al. The reduction of magnetic reconnection outflow jets to sub-Alfvénic speeds. Phys. Plasmas 25, 102120 (2018).
McKenzie, D. E. & Hudson, H. S. X-ray observations of motions and structure above a solar flare arcade. Astrophys. J. 519, L93–L96 (1999).
Savage, S. L., McKenzie, D. E. & Reeves, K. K. Re-interpretation of supra-arcade downflows in solar flares. Astrophys. J. Lett. 747, L40 (2012).
Savage, S. L. & McKenzie, D. E. Quantitative examination of a large sample of supra-arcade downflows in eruptive solar flares. Astrophys. J. 730, 98 (2011).
Innes, D. E., Guo, L. J., Bhattacharjee, A., Huang, Y. M. & Schmit, D. Observations of supra-arcade fans: instabilities at the head of reconnection jets. Astrophys. J. 796, 27 (2014).
Innes, D. E., McKenzie, D. E. & Wang, T. Observations of 1,000 km s−1 Doppler shifts in 107 K solar flare supra-arcade. Sol. Phys. 217, 267–279 (2003).
Lin, J. et al. Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys. J. 622, 1251–1264 (2005).
Liu, W., Chen, Q. & Petrosian, V. Plasmoid ejections and loop contractions in an eruptive M7.7 solar flare: evidence of particle acceleration and heating in magnetic reconnection outflows. Astrophys. J. 767, 168 (2013).
Warren, H. P. et al. Spectroscopic observations of current sheet formation and evolution. Astrophys. J. 854, 122 (2018).
Cassak, P. A. et al. On the cause of supra-arcade downflows in solar flares. Astrophys. J. 775, L14 (2013).
Cécere, M., Zurbriggen, E., Costa, A. & Schneiter, M. 3D MHD simulation of flare supra-arcade downflows in a turbulent current sheet medium. Astrophys. J. 807, 6 (2015).
Guo, L. J., Huang, Y. M., Bhattacharjee, A. & Innes, D. E. Rayleigh–Taylor type instabilities in the reconnection exhaust jet as a mechanism for supra-arcade downflows in the Sun. Astrophys. J. 796, L29 (2014).
Reeves, K. K., Freed, M. S., McKenzie, D. E. & Savage, S. L. An exploration of heating mechanisms in a supra-arcade plasma sheet formed after a coronal mass ejection. Astrophys. J. 836, 55 (2017).
Longcope, D., Unverferth, J., Klein, C., McCarthy, M. & Priest, E. Evidence for downflows in the narrow plasma sheet of 2017 September 10 and their significance for flare reconnection. Astrophys. J. 868, 148 (2018).
Masuda, S., Kosugi, T., Hara, H., Tsuneta, S. & Ogawara, Y. A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497 (1994).
Krucker, S. et al. Measurements of the coronal acceleration region of a solar flare. Astrophys. J. 714, 1108–1119 (2010).
Chen, B. et al. Measurement of magnetic field and relativistic electrons along a solar flare current sheet. Nat. Astron. 4, 1140–1147 (2020).
Fleishman, G. D. et al. Decay of the coronal magnetic field can release sufficient energy to power a solar flare. Science 367, 278–280 (2020).
Chen, B. et al. Particle acceleration by a solar flare termination shock. Science 350, 1238–1242 (2015).
Takasao, S., Matsumoto, T., Nakamura, N. & Shibata, K. Magnetohydrodynamic shocks in and above post-flare loops: two-dimensional simulation and a simplified model. Astrophys. J. 805, 135 (2015).
Somov, B. V. & Kosugi, T. Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485, 859–868 (1997).
Reeves, K. K. et al. Hot plasma flows and oscillations in the loop-top region during the 2017 September 10 X8.2 solar flare. Astrophys. J. 905, 165 (2020).
Miles, A. R. The blast-wave-driven instability as a vehicle for understanding supernova explosion structure. Astrophys. J. 696, 498–514 (2009).
Warren, J. S. et al. Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. Astrophys. J. 634, 376–389 (2005).
Hanneman, W. J. & Reeves, K. K. Thermal structure of current sheets and supra-arcade downflows in the solar corona. Astrophys. J. 786, 95 (2014).
Savage, S. L., McKenzie, D. E., Reeves, K. K., Forbes, T. G. & Longcope, D. W. Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9 ‘Cartwheel CME’ flare. Astrophys. J. 722, 329–342 (2010).
Yu, S. et al. Magnetic reconnection during the post-impulsive phase of a long-duration solar flare: bidirectional outflows as a cause of microwave and X-ray bursts. Astrophys. J. 900, 17 (2020).
Su, Y. et al. Imaging coronal magnetic-field reconnection in a solar flare. Nat. Phys. 9, 489–493 (2013).
Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F. & Simon, J. B. Athena: a new code for astrophysical MHD. Astrophys. J. Supp. 178, 137–177 (2008).
Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012).
O’Dwyer, B., Del Zanna, G., Mason, H. E., Weber, M. A. & Tripathi, D. SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma. Astron. Astrophys. 521, A21 (2010).
Shen, C., Lin, J. & Murphy, N. Numerical experiments on fine structure within reconnecting current sheets in solar flares. Astrophys. J. 737, 14 (2011).
Shen, C., Kong, X., Guo, F., Raymond, J. C. & Chen, B. The dynamical behavior of reconnection-driven termination shocks in solar flares: magnetohydrodynamic simulations. Astrophys. J. 869, 116 (2018).
Meyer, C. D., Balsara, D. S. & Aslam, T. D. A second-order accurate Super TimeStepping formulation for anisotropic thermal conduction. Mon. Not. R. Astron. Soc. 422, 2102–2115 (2012).
Klimchuk, J. A., Patsourakos, S. & Cargill, P. J. Highly efficient modeling of dynamic coronal loops. Astrophys. J. 682, 1351–1362 (2008).
Yokoyama, T. & Shibata, K. Magnetohydrodynamic simulation of a solar flare with chromospheric evaporation effect based on the magnetic reconnection model. Astrophys. J. 549, 1160–1174 (2001).
Kopp, R. & Pneuman, G. Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 50, 85–98 (1976).
Boerner, P. et al. Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 41–66 (2012).
Dere, K. P., Del Zanna, G., Young, P. R., Landi, E. & Sutherland, R. S. CHIANTI—an atomic database for emission lines. XV. Version 9, improvements for the X-ray satellite lines. Astrophys. J. Supp. 241, 22 (2019).
Feldman, U. Elemental abundances in the upper solar atmosphere. Phys. Scr. 46, 202–220 (1992).
Priest, E. & Forbes, T. Magnetic Reconnection: MHD Theory and Applications Ch. 4 (Cambridge Univ. Press, 2000).
Petschek, H. E. Magnetic Field Annihilation Vol. 50 (NASA Special Publication,1964).
Forbes, T. G. & Priest, E. R. A comparison of analytical and numerical models for steadily driven magnetic reconnection. Rev. Geophys. 25, 1583–1607 (1987).
Yokoyama, T. & Shibata, K. What is the condition for fast magnetic reconnection? Astrophys. J. Lett. 436, L197–L200 (1994).
Strauss, H. R. Turbulent reconnection. Astrophys. J. 326, 412–417 (1988).
Lazarian, A. et al. Turbulence, magnetic reconnection in turbulent fluids and energetic particle acceleration. Space Sci. Rev. 173, 557–622 (2012).
Lazarian, A. et al. 3D turbulent reconnection: theory, tests, and astrophysical implications. Phys. Plasmas 27, 012305 (2020).
Loureiro, N. F., Schekochihin, A. A. & Cowley, S. C. Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14, 100703 (2007).
Bhattacharjee, A., Huang, Y.-M., Yang, H. & Rogers, B. Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 112102 (2009).
Ni, L. et al. Linear plasmoid instability of thin current sheets with shear flow. Phys. Plasmas 17, 052109 (2010).
Mei, Z. et al. Numerical experiments on magnetic reconnection in solar flare and coronal mass ejection current sheets. Mon. Not. R. Astron. Soc. 425, 2824–2839 (2012).
Ye, J., Shen, C., Raymond, J. C., Lin, J. & Ziegler, U. Numerical study of the cascading energy conversion of the reconnection current sheet in solar eruptions. Mon. Not. R. Astron. Soc. 482, 588–605 (2019).
Ji, H. & Daughton, W. Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18, 111207 (2011).
Cassak, P. A., Liu, Y. H. & Shay, M. A. A review of the 0.1 reconnection rate problem. J. Plasma Phys. 83, 715830501 (2017).
Huang, Y.-M. & Bhattacharjee, A. Turbulent magnetohydrodynamic reconnection mediated by the plasmoid instability. Astrophys. J. 818, 20 (2016).
Yang, L. et al. Fast magnetic reconnection with turbulence in high Lundquist number limit. Astrophys. J. Lett. 901, L22 (2020).
Zhou, Y. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720, 1–136 (2017).
Alon, U., Hecht, J., Ofer, D. & Shvarts, D. Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74, 534–537 (1995).
McKenzie, D. E. Turbulent dynamics in solar flare sheet structures measured with local correlation tracking. Astrophys. J. 766, 39 (2013).
Samanta, T. et al. Plasma heating induced by tadpole-like downflows in the flaring solar corona. Innovation 2, 100083 (2021).
Aschenbach, B., Egger, R. & Trümper, J. Discovery of explosion fragments outside the Vela supernova remnant shock-wave boundary. Nature 373, 587–590 (1995).
Balick, B. & Frank, A. Shapes and shaping of planetary nebulae. Annu. Rev. Astron. Astrophys. 40, 439–486 (2002).
Attal, N. & Ramaprabhu, P. Numerical investigation of a single-mode chemically reacting Richtmyer–Meshkov instability. Shock Waves 25, 307–328 (2015).
Chen, F., Xu, A. & Zhang, G. Collaboration and competition between Richtmyer–Meshkov instability and Rayleigh–Taylor instability. Phys. Fluids 30, 102105 (2018).
Wheatley, V., Gehre, R. M., Samtaney, R. & Pullin, D. I. The magnetohydrodynamic Richtmyer–Meshkov instability: the oblique field case. In 29th International Symposium on Shock Waves (eds. Riccardo, B & Devesh, R) Vol. 2 1107-1112 (Springer International Publishing, 2015).
Try Adsterra Earnings, it’s 100% Authentic to make money more and more.
More Story on Source:
*here*
The origin of underdense plasma downflows associated with magnetic reconnection in solar flares
Published By
Latest entries
- allPost2025.01.31Husband of Potomac crash victim says he had dinner waiting at home for her
- allPost2025.01.31NTSB: Divers have searched ‘all accessible areas’ of the Potomac River
- allPost2025.01.316-year-old Sama al-Qudra was ‘the last child killed’ before the Gaza ceasefire
- allPost2025.01.31Топ онлайн казино россии 2025 рейтинг и обзор платформ