The origin of underdense plasma downflows associated with magnetic reconnection in solar flares

375 people 👁️ing this randomly

The origin of underdense plasma downflows associated with magnetic reconnection in solar flares

  • Forbes, T. G. & Acton, L. W. Reconnection and field line shrinkage in solar flares. Astrophys. J. 459, 330–341 (1996).

    ADS  Google Scholar 

  • Haggerty, C. C. et al. The reduction of magnetic reconnection outflow jets to sub-Alfvénic speeds. Phys. Plasmas 25, 102120 (2018).

    ADS  Google Scholar 

  • McKenzie, D. E. & Hudson, H. S. X-ray observations of motions and structure above a solar flare arcade. Astrophys. J. 519, L93–L96 (1999).

    ADS  Google Scholar 

  • Savage, S. L., McKenzie, D. E. & Reeves, K. K. Re-interpretation of supra-arcade downflows in solar flares. Astrophys. J. Lett. 747, L40 (2012).

    ADS  Google Scholar 

  • Savage, S. L. & McKenzie, D. E. Quantitative examination of a large sample of supra-arcade downflows in eruptive solar flares. Astrophys. J. 730, 98 (2011).

    ADS  Google Scholar 

  • Innes, D. E., Guo, L. J., Bhattacharjee, A., Huang, Y. M. & Schmit, D. Observations of supra-arcade fans: instabilities at the head of reconnection jets. Astrophys. J. 796, 27 (2014).

    ADS  Google Scholar 

  • Innes, D. E., McKenzie, D. E. & Wang, T. Observations of 1,000 km s−1 Doppler shifts in 107 K solar flare supra-arcade. Sol. Phys. 217, 267–279 (2003).

    ADS  Google Scholar 

  • Lin, J. et al. Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys. J. 622, 1251–1264 (2005).

    ADS  Google Scholar 

  • Liu, W., Chen, Q. & Petrosian, V. Plasmoid ejections and loop contractions in an eruptive M7.7 solar flare: evidence of particle acceleration and heating in magnetic reconnection outflows. Astrophys. J. 767, 168 (2013).

    ADS  Google Scholar 

  • Warren, H. P. et al. Spectroscopic observations of current sheet formation and evolution. Astrophys. J. 854, 122 (2018).

    ADS  Google Scholar 

  • Cassak, P. A. et al. On the cause of supra-arcade downflows in solar flares. Astrophys. J. 775, L14 (2013).

    ADS  Google Scholar 

  • Cécere, M., Zurbriggen, E., Costa, A. & Schneiter, M. 3D MHD simulation of flare supra-arcade downflows in a turbulent current sheet medium. Astrophys. J. 807, 6 (2015).

    ADS  Google Scholar 

  • Guo, L. J., Huang, Y. M., Bhattacharjee, A. & Innes, D. E. Rayleigh–Taylor type instabilities in the reconnection exhaust jet as a mechanism for supra-arcade downflows in the Sun. Astrophys. J. 796, L29 (2014).

    ADS  Google Scholar 

  • Reeves, K. K., Freed, M. S., McKenzie, D. E. & Savage, S. L. An exploration of heating mechanisms in a supra-arcade plasma sheet formed after a coronal mass ejection. Astrophys. J. 836, 55 (2017).

    ADS  Google Scholar 

  • Longcope, D., Unverferth, J., Klein, C., McCarthy, M. & Priest, E. Evidence for downflows in the narrow plasma sheet of 2017 September 10 and their significance for flare reconnection. Astrophys. J. 868, 148 (2018).

    ADS  Google Scholar 

  • Masuda, S., Kosugi, T., Hara, H., Tsuneta, S. & Ogawara, Y. A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497 (1994).

    ADS  Google Scholar 

  • Krucker, S. et al. Measurements of the coronal acceleration region of a solar flare. Astrophys. J. 714, 1108–1119 (2010).

    ADS  Google Scholar 

  • Chen, B. et al. Measurement of magnetic field and relativistic electrons along a solar flare current sheet. Nat. Astron. 4, 1140–1147 (2020).

    ADS  Google Scholar 

  • Fleishman, G. D. et al. Decay of the coronal magnetic field can release sufficient energy to power a solar flare. Science 367, 278–280 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  • Chen, B. et al. Particle acceleration by a solar flare termination shock. Science 350, 1238–1242 (2015).

    ADS  Google Scholar 

  • Takasao, S., Matsumoto, T., Nakamura, N. & Shibata, K. Magnetohydrodynamic shocks in and above post-flare loops: two-dimensional simulation and a simplified model. Astrophys. J. 805, 135 (2015).

    ADS  Google Scholar 

  • Somov, B. V. & Kosugi, T. Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485, 859–868 (1997).

    ADS  Google Scholar 

  • Reeves, K. K. et al. Hot plasma flows and oscillations in the loop-top region during the 2017 September 10 X8.2 solar flare. Astrophys. J. 905, 165 (2020).

    ADS  Google Scholar 

  • Miles, A. R. The blast-wave-driven instability as a vehicle for understanding supernova explosion structure. Astrophys. J. 696, 498–514 (2009).

    ADS  Google Scholar 

  • Warren, J. S. et al. Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. Astrophys. J. 634, 376–389 (2005).

    ADS  Google Scholar 

  • Hanneman, W. J. & Reeves, K. K. Thermal structure of current sheets and supra-arcade downflows in the solar corona. Astrophys. J. 786, 95 (2014).

    ADS  Google Scholar 

  • Savage, S. L., McKenzie, D. E., Reeves, K. K., Forbes, T. G. & Longcope, D. W. Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9 ‘Cartwheel CME’ flare. Astrophys. J. 722, 329–342 (2010).

    ADS  Google Scholar 

  • Yu, S. et al. Magnetic reconnection during the post-impulsive phase of a long-duration solar flare: bidirectional outflows as a cause of microwave and X-ray bursts. Astrophys. J. 900, 17 (2020).

    ADS  Google Scholar 

  • Su, Y. et al. Imaging coronal magnetic-field reconnection in a solar flare. Nat. Phys. 9, 489–493 (2013).

    Google Scholar 

  • Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F. & Simon, J. B. Athena: a new code for astrophysical MHD. Astrophys. J. Supp. 178, 137–177 (2008).

    ADS  Google Scholar 

  • Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012).

    ADS  Google Scholar 

  • O’Dwyer, B., Del Zanna, G., Mason, H. E., Weber, M. A. & Tripathi, D. SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma. Astron. Astrophys. 521, A21 (2010).

    Google Scholar 

  • Shen, C., Lin, J. & Murphy, N. Numerical experiments on fine structure within reconnecting current sheets in solar flares. Astrophys. J. 737, 14 (2011).

    ADS  Google Scholar 

  • Shen, C., Kong, X., Guo, F., Raymond, J. C. & Chen, B. The dynamical behavior of reconnection-driven termination shocks in solar flares: magnetohydrodynamic simulations. Astrophys. J. 869, 116 (2018).

    ADS  Google Scholar 

  • Meyer, C. D., Balsara, D. S. & Aslam, T. D. A second-order accurate Super TimeStepping formulation for anisotropic thermal conduction. Mon. Not. R. Astron. Soc. 422, 2102–2115 (2012).

    ADS  Google Scholar 

  • Klimchuk, J. A., Patsourakos, S. & Cargill, P. J. Highly efficient modeling of dynamic coronal loops. Astrophys. J. 682, 1351–1362 (2008).

    ADS  Google Scholar 

  • Yokoyama, T. & Shibata, K. Magnetohydrodynamic simulation of a solar flare with chromospheric evaporation effect based on the magnetic reconnection model. Astrophys. J. 549, 1160–1174 (2001).

    ADS  Google Scholar 

  • Kopp, R. & Pneuman, G. Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 50, 85–98 (1976).

    ADS  Google Scholar 

  • Boerner, P. et al. Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 41–66 (2012).

    ADS  Google Scholar 

  • Dere, K. P., Del Zanna, G., Young, P. R., Landi, E. & Sutherland, R. S. CHIANTI—an atomic database for emission lines. XV. Version 9, improvements for the X-ray satellite lines. Astrophys. J. Supp. 241, 22 (2019).

    ADS  Google Scholar 

  • Feldman, U. Elemental abundances in the upper solar atmosphere. Phys. Scr. 46, 202–220 (1992).

    ADS  Google Scholar 

  • Priest, E. & Forbes, T. Magnetic Reconnection: MHD Theory and Applications Ch. 4 (Cambridge Univ. Press, 2000).

  • Petschek, H. E. Magnetic Field Annihilation Vol. 50 (NASA Special Publication,1964).

  • Forbes, T. G. & Priest, E. R. A comparison of analytical and numerical models for steadily driven magnetic reconnection. Rev. Geophys. 25, 1583–1607 (1987).

    ADS  Google Scholar 

  • Yokoyama, T. & Shibata, K. What is the condition for fast magnetic reconnection? Astrophys. J. Lett. 436, L197–L200 (1994).

    ADS  Google Scholar 

  • Strauss, H. R. Turbulent reconnection. Astrophys. J. 326, 412–417 (1988).

    ADS  Google Scholar 

  • Lazarian, A. et al. Turbulence, magnetic reconnection in turbulent fluids and energetic particle acceleration. Space Sci. Rev. 173, 557–622 (2012).

    ADS  Google Scholar 

  • Lazarian, A. et al. 3D turbulent reconnection: theory, tests, and astrophysical implications. Phys. Plasmas 27, 012305 (2020).

    ADS  Google Scholar 

  • Loureiro, N. F., Schekochihin, A. A. & Cowley, S. C. Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14, 100703 (2007).

    ADS  Google Scholar 

  • Bhattacharjee, A., Huang, Y.-M., Yang, H. & Rogers, B. Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 112102 (2009).

    ADS  Google Scholar 

  • Ni, L. et al. Linear plasmoid instability of thin current sheets with shear flow. Phys. Plasmas 17, 052109 (2010).

    ADS  Google Scholar 

  • Mei, Z. et al. Numerical experiments on magnetic reconnection in solar flare and coronal mass ejection current sheets. Mon. Not. R. Astron. Soc. 425, 2824–2839 (2012).

    ADS  Google Scholar 

  • Ye, J., Shen, C., Raymond, J. C., Lin, J. & Ziegler, U. Numerical study of the cascading energy conversion of the reconnection current sheet in solar eruptions. Mon. Not. R. Astron. Soc. 482, 588–605 (2019).

    ADS  Google Scholar 

  • Ji, H. & Daughton, W. Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18, 111207 (2011).

    ADS  Google Scholar 

  • Cassak, P. A., Liu, Y. H. & Shay, M. A. A review of the 0.1 reconnection rate problem. J. Plasma Phys. 83, 715830501 (2017).

    Google Scholar 

  • Huang, Y.-M. & Bhattacharjee, A. Turbulent magnetohydrodynamic reconnection mediated by the plasmoid instability. Astrophys. J. 818, 20 (2016).

    ADS  Google Scholar 

  • Yang, L. et al. Fast magnetic reconnection with turbulence in high Lundquist number limit. Astrophys. J. Lett. 901, L22 (2020).

    ADS  Google Scholar 

  • Zhou, Y. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720, 1–136 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  • Alon, U., Hecht, J., Ofer, D. & Shvarts, D. Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74, 534–537 (1995).

    ADS  Google Scholar 

  • McKenzie, D. E. Turbulent dynamics in solar flare sheet structures measured with local correlation tracking. Astrophys. J. 766, 39 (2013).

    ADS  Google Scholar 

  • Samanta, T. et al. Plasma heating induced by tadpole-like downflows in the flaring solar corona. Innovation 2, 100083 (2021).

    Google Scholar 

  • Aschenbach, B., Egger, R. & Trümper, J. Discovery of explosion fragments outside the Vela supernova remnant shock-wave boundary. Nature 373, 587–590 (1995).

    ADS  Google Scholar 

  • Balick, B. & Frank, A. Shapes and shaping of planetary nebulae. Annu. Rev. Astron. Astrophys. 40, 439–486 (2002).

    ADS  Google Scholar 

  • Attal, N. & Ramaprabhu, P. Numerical investigation of a single-mode chemically reacting Richtmyer–Meshkov instability. Shock Waves 25, 307–328 (2015).

    ADS  Google Scholar 

  • Chen, F., Xu, A. & Zhang, G. Collaboration and competition between Richtmyer–Meshkov instability and Rayleigh–Taylor instability. Phys. Fluids 30, 102105 (2018).

    ADS  Google Scholar 

  • Wheatley, V., Gehre, R. M., Samtaney, R. & Pullin, D. I. The magnetohydrodynamic Richtmyer–Meshkov instability: the oblique field case. In 29th International Symposium on Shock Waves (eds. Riccardo, B & Devesh, R) Vol. 2 1107-1112 (Springer International Publishing, 2015).

  • Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    More Story on Source:

    *here*

    The origin of underdense plasma downflows associated with magnetic reconnection in solar flares

    Dillard's - The Style of Your Life.

    By allaboutian

    open profile for all

    Related Posts

    996 people 👁️ing this randomly Tip #1: Your resume is your first impression. Make it…

    Just a moment…

    857 people 👁️ing this randomly Just a moment… Please enable Cookies and reload the page.…

    The University of Manchester | Jobs

    750 people 👁️ing this randomly The University of Manchester | Jobs Sackville Street, Manchester Try…