Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b

58 people 👁️ing this randomly

Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b

  • Hubeny, I., Burrows, A. & Sudarsky, D. A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011–1018 (2003).

    ADS  Google Scholar 

  • Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419 (2008).

    ADS  Google Scholar 

  • Désert, J. M. et al. Atmospheric composition and structure of HD 209458b (eds Pont, F. et al.) in Proc. IAU Symp., 524–527 (Cambridge Univ. Press, 2009).

  • Sedaghati, E. et al. Detection of titanium oxide in the atmosphere of a hot Jupiter. Nature 549, 238–241 (2017).

    ADS  Google Scholar 

  • Evans, T. M. et al. An ultrahot gas-giant exoplanet with a stratosphere. Nature 548, 58–61 (2017).

    ADS  Google Scholar 

  • Evans, T. M. et al. An optical transmission spectrum for the ultrahot Jupiter WASP-121b measured with the Hubble Space Telescope. Astron. J. 156, 283 (2018).

    ADS  Google Scholar 

  • Nugroho, S. K. et al. High-resolution spectroscopic detection of TiO and a stratosphere in the day-side of WASP-33b. Astron. J. 154, 221 (2017).

    ADS  Google Scholar 

  • Hoeijmakers, H. et al. A search for TiO in the optical high-resolution transmission spectrum of HD 209458b: hindrance due to inaccuracies in the line database. Astron. Astrophys. 575, A20 (2015).

    Google Scholar 

  • Espinoza, N. et al. ACCESS: a featureless optical transmission spectrum for WASP-19b from Magellan/IMACS. Mon. Not. R. Astron. Soc. 482, 2065–2087 (2019).

    ADS  Google Scholar 

  • Sedaghati, E. et al. A spectral survey of WASP-19b with ESPRESSO. Mon. Not. R. Astro. Soc. 505, 435–458 (2021).

    ADS  Google Scholar 

  • Merritt, S. R. et al. Non-detection of TiO and VO in the atmosphere of WASP-121b using high-resolution spectroscopy. Astron. Astrophys. 636, A117 (2020).

    Google Scholar 

  • Herman, M. K., de Mooij, E. J., Jayawardhana, R. & Brogi, M. Search for TiO and optical nightside emission from the exoplanet WASP-33b. Astron. J. 160, 93 (2020).

    ADS  Google Scholar 

  • Serindag, D. B. et al. Is TiO emission present in the ultrahot Jupiter WASP-33b? A reassessment using the improved ExoMol Toto line list. Astron. Astrophys. 645, A90 (2021).

    Google Scholar 

  • Anderson, D. et al. WASP-189b: an ultrahot Jupiter transiting the bright A star HR 5599 in a polar orbit. Preprint at https://arxiv.org/abs/1809.04897 (2018).

  • Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).

    ADS  Google Scholar 

  • Lendl, M. et al. The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS. Astron. Astrophys. 643, A94 (2020).

    Google Scholar 

  • Hoeijmakers, H. J. et al. Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b. Nature 560, 453–455 (2018).

    ADS  Google Scholar 

  • Casasayas-Barris, N. et al. Na i and Hα absorption features in the atmosphere of MASCARA-2b/KELT-20b. Astron. Astrophys. 616, A151 (2018).

    Google Scholar 

  • Hoeijmakers, H. J. et al. A spectral survey of an ultrahot Jupiter—detection of metals in the transmission spectrum of KELT-9 b. Astron. Astrophys. 627, A165 (2019).

    Google Scholar 

  • Casasayas-Barris, N. et al. Atmospheric characterization of the ultrahot Jupiter MASCARA-2b/KELT-20b—detection of Ca ii, Fe ii, Na i, and the Balmer series of H (Hα, Hβ, and Hγ) with high-dispersion transit spectroscopy. Astron. Astrophys. 628, A9 (2019).

    Google Scholar 

  • Cauley, P. W. et al. Atmospheric dynamics and the variable transit of KELT-9 b. Astron. J. 157, 69 (2019).

    ADS  Google Scholar 

  • Ehrenreich, D. et al. Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020).

    ADS  Google Scholar 

  • Gibson, N. P. et al. Detection of Fe i in the atmosphere of the ultrahot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Mon. Not. R. Astron. Soc. 493, 2215–2228 (2020).

    ADS  Google Scholar 

  • Hoeijmakers, H. J. et al. High-resolution transmission spectroscopy of MASCARA-2 b with EXPRES. Astron. Astrophys. 641, A120 (2020).

    Google Scholar 

  • Hoeijmakers, H. J. et al. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)—IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b. Astron. Astrophys. 641, A123 (2020).

    Google Scholar 

  • Nugroho, S. K. et al. Searching for thermal inversion agents in the transmission spectrum of KELT-20b/MASCARA-2b: detection of neutral iron and ionised calcium H&K lines. Mon. Not. R. Astron. Soc. 496, 504–522 (2020).

    ADS  Google Scholar 

  • Nugroho, S. K. et al. Detection of Fe i emission in the dayside spectrum of WASP-33b. Astrophys. J. Lett. 898, L31 (2020).

    ADS  Google Scholar 

  • Pino, L. et al. Neutral iron emission lines from the dayside of KELT-9b: the GAPS program with HARPS-N at TNG XX. Astrophys. J. Lett. 894, L27 (2020).

    ADS  Google Scholar 

  • Stangret, M. et al. Detection of Fe i and Fe ii in the atmosphere of MASCARA-2b using a cross-correlation method. Astron. Astrophys. 638, A26 (2020).

    Google Scholar 

  • Yan, F. et al. A temperature inversion with atomic iron in the ultrahot dayside atmosphere of WASP-189b. Astron. Astrophys. 640, L5 (2020).

    ADS  Google Scholar 

  • Borsa, F. et al. Atmospheric Rossiter–McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO. Astron. Astrophys. 645, A24 (2021).

    Google Scholar 

  • Tabernero, H. M. et al. ESPRESSO high-resolution transmission spectroscopy of WASP-76 b. Astron. Astrophys. 646, A158 (2021).

    Google Scholar 

  • Smette, A. et al. Molecfit: a general tool for telluric absorption correction—I. Method and application to ESO instruments. Astron. Astrophys. 576, A77 (2015).

    Google Scholar 

  • Kausch, W. et al. Molecfit: a general tool for telluric absorption correction—II. Quantitative evaluation on ESO-VLT/X-Shooter spectra. Astron. Astrophys. 576, A78 (2015).

    Google Scholar 

  • Seager, S. & Sasselov, D. D. Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, 916–921 (2000).

    ADS  Google Scholar 

  • Brogi, M. et al. The signature of orbital motion from the dayside of the planet τ Boötis b. Nature 486, 502–504 (2012).

    ADS  Google Scholar 

  • Showman, A. P., Fortney, J. J., Lewis, N. K. & Shabram, M. Doppler signatures of the atmospheric circulation on hot Jupiters. Astrophys. J. 762, 24 (2013).

    ADS  Google Scholar 

  • Kempton, E. M. R., Perna, R. & Heng, K. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models. Astrophys. J. 795, 24 (2014).

    ADS  Google Scholar 

  • Louden, T. & Wheatley, P. J. Spatially resolved eastward winds and rotation of HD 189733b. Astrophys. J. Lett. 814, L24 (2015).

    ADS  Google Scholar 

  • Brogi, M. et al. Rotation and winds of exoplanet HD 189733 b measured with high-dispersion transmission spectroscopy. Astrophys. J. 817, 106 (2016).

    ADS  Google Scholar 

  • Fortney, J. J., Cooper, C. S., Showman, A. P., Marley, M. S. & Freedman, R. S. The influence of atmospheric dynamics on the infrared spectra and light curves of hot Jupiters. Astrophys. J. 652, 746–757 (2006).

    ADS  Google Scholar 

  • Spiegel, D. S., Silverio, K. & Burrows, A. Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009).

    ADS  Google Scholar 

  • Stevenson, K. B. et al. Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346, 838–841 (2014).

    ADS  Google Scholar 

  • Showman, A. P., Lewis, N. K. & Fortney, J. J. 3D atmospheric circulation of warm and hot Jupiters. Astrophys. J. 801, 95 (2015).

    ADS  Google Scholar 

  • Parmentier, V. et al. From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context. Astron. Astrophys. 617, A110 (2018).

    Google Scholar 

  • Pluriel, W., Zingales, T., Leconte, J. & Parmentier, V. Strong biases in retrieved atmospheric composition caused by day–night chemical heterogeneities. Astron. Astrophys. 636, A66 (2020).

    ADS  Google Scholar 

  • Wardenier, J. P., Parmentier, V., Lee, E. K. H., Line, M. & Gharib-Nezhad, E. Decomposing the iron cross-correlation signal of the ultra-hot Jupiter WASP-76b in transmission using 3D Monte-Carlo radiative transfer. Mon. Not. R. Astron. Soc. 506, 1258–1283 (2021).

    ADS  Google Scholar 

  • Fossati, L. et al. A data-driven approach to constraining the atmospheric temperature structure of the ultrahot Jupiter KELT-9b. Astron. Astrophys. 643, A131 (2020).

    Google Scholar 

  • Lothringer, J. D., Fu, G., Sing, D. K. & Barman, T. S. UV exoplanet transmission spectral features as probes of metals and rainout. Astrophys. J. Lett. 898, L14 (2020).

    ADS  Google Scholar 

  • Bourrier, V. et al. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)—III. Atmospheric structure of the misaligned ultrahot Jupiter WASP-121b. Astron. Astrophys. 635, A205 (2020).

    Google Scholar 

  • Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    ADS  Google Scholar 

  • Mendonça, J. M., Tsai, S.-M., Malik, M., Grimm, S. L. & Heng, K. Three-dimensional circulation driving chemical disequilibrium in WASP-43b. Astrophys. J. 869, 107 (2018).

    ADS  Google Scholar 

  • Ahlers, J. P. et al. KELT-9 b’s asymmetric TESS transit caused by rapid stellar rotation and spin–orbit misalignment. Astron. J. 160, 4 (2020).

    ADS  Google Scholar 

  • Changeat, Q. & Edwards, B. The Hubble WFC3 emission spectrum of the extremely hot Jupiter KELT-9b. Astrophys. J. Lett. 907, L22 (2021).

    ADS  Google Scholar 

  • Chen, G., Palle, E., Parviainen, H., Murgas, F. & Yan, F. Evidence for TiO in the atmosphere of the hot Jupiter HAT-P-65 b. Astrophys. J. Lett. 913, 14 (2021).

    Google Scholar 

  • Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

  • Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

  • Lendl, M. et al. WASP-42 b and WASP-49 b: two new transiting sub-Jupiters. Astron. Astrophys. 544, A72 (2012).

    Google Scholar 

  • Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, L171–L175 (2002).

    ADS  Google Scholar 

  • Lendl, M. et al. TOI-222: a single-transit TESS candidate revealed to be a 34-d eclipsing binary with CORALIE, EulerCam, and NGTS. Mon. Not. R. Astron. Soc. 492, 1761–1769 (2020).

    ADS  Google Scholar 

  • McKemmish, L. K. et al. ExoMol molecular line lists—XXXIII. The spectrum of titanium oxide. Mon. Not. R. Astron. Soc. 488, 2836–2854 (2019).

    ADS  Google Scholar 

  • Gaudi, B. S. et al. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature 546, 514–518 (2017).

    ADS  Google Scholar 

  • Cegla, H. M. et al. Modeling the Rossiter–McLaughlin effect: impact of the convective center-to-limb variations in the stellar photosphere. Astrophys. J. 819, 67 (2016).

    ADS  Google Scholar 

  • Stock, J. W., Kitzmann, D., Patzer, A. B. C. & Sedlmayr, E. FastChem: a computer program for efficient complex chemical equilibrium calculations in the neutral/ionized gas phase with applications to stellar and planetary atmospheres. Mon. Not. R. Astron. Soc. 479, 865–874 (2018).

    ADS  Google Scholar 

  • Gaidos, E., Kitzmann, D. & Heng, K. Exoplanet characterization by multi-observatory transit photometry with TESS and CHEOPS. Mon. Not. R. Astron. Soc. 468, 3418–3427 (2017).

    ADS  Google Scholar 

  • Grimm, S. L. & Heng, K. HELIOS-K: an ultrafast, open-source opacity calculator for radiative transfer. Astrophys. J. 808, 182 (2015).

    ADS  Google Scholar 

  • Grimm, S. L. et al. HELIOS-K 2.0 opacity calculator and open-source opacity database for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 253, 30 (2021).

    ADS  Google Scholar 

  • Li, G. et al. Rovibrational line lists for nine isotopologues of the CO molecule in the X 1Σ+ ground electronic state. Astrophys. J. Suppl. Ser. 216, 15 (2015).

    ADS  Google Scholar 

  • Ryabchikova, T. et al. A major upgrade of the VALD database. Phys. Scr. 90, 054005 (2015).

    ADS  Google Scholar 

  • Tennyson, J. et al. The ExoMol database: molecular line lists for exoplanet and other hot atmospheres. J. Mol. Spectrosc. 327, 73–94 (2016).

    ADS  Google Scholar 

  • Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).

    ADS  Google Scholar 

  • Valenti, J. A. & Piskunov, N. Spectroscopy Made Easy: a new tool for fitting observations with synthetic spectra. Astron. Astrophys. Suppl. 118, 595–603 (1996).

    ADS  Google Scholar 

  • Piskunov, N. & Valenti, J. A. Spectroscopy made easy: evolution. Astron. Astrophys. 597, A16 (2017).

    ADS  Google Scholar 

  • Gustafsson, B. et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 486, 951–970 (2008).

    ADS  Google Scholar 

  • Seidel, J. et al. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)—II. A broadened sodium feature on the ultrahot giant WASP-76b. Astron. Astrophys. 623, A166 (2019).

    Google Scholar 

  • Seidel, J. V. et al. Wind of change: retrieving exoplanet atmospheric winds from high-resolution spectroscopy. Astron. Astrophys. 633, A86 (2020).

    Google Scholar 

  • Redfield, S., Endl, M., Cochran, W. D. & Koesterke, L. Sodium absorption from the exoplanetary atmosphere of HD 189733b detected in the optical transmission spectrum. Astrophys. J. Lett. 673, L87 (2008).

    ADS  Google Scholar 

  • Seidel, J. V. et al. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)—VI. Non-detection of sodium with HARPS on the bloated super-Neptune WASP-127b. Astron. Astrophys. 643, A45 (2020).

    Google Scholar 

  • Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    More Story on Source:

    *here*

    Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b

    Dillard's - The Style of Your Life.

    By allaboutian

    open profile for all

    Related Posts

    886 people 👁️ing this randomly Tip #1: Your resume is your first impression. Make it…

    Just a moment…

    783 people 👁️ing this randomly Just a moment… Please enable Cookies and reload the page.…

    The University of Manchester | Jobs

    719 people 👁️ing this randomly The University of Manchester | Jobs Sackville Street, Manchester Try…