A rich population of free-floating planets in the Upper Scorpius young stellar association

97 people 👁️ing this randomly

A rich population of free-floating planets in the Upper Scorpius young stellar association

  • 1.

    Mróz, P. et al. A terrestrial-mass rogue planet candidate detected in the shortest-timescale microlensing event. Astrophys. J. Lett. 903, L11 (2020).

    ADS  Google Scholar 

  • 2.

    Ryu, Y.-H. et al. KMT-2017-BLG-2820 and the nature of the free-floating planet population. Astron. J. 161, 126 (2021).

    ADS  Google Scholar 

  • 3.

    Scholz, A. et al. Substellar Objects in Nearby Young Clusters (SONYC). VI. The planetary-mass domain of NGC 1333. Astrophys. J. 756, 24 (2012).

    ADS  Google Scholar 

  • 4.

    Peña Ramírez, K., Béjar, V. J. S., Zapatero Osorio, M. R., Petr-Gotzens, M. G. & Martín, E. L. New isolated planetary-mass objects and the stellar and substellar mass function of the σ Orionis cluster. Astrophys. J. 754, 30 (2012).

    ADS  Google Scholar 

  • 5.

    Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017).

    ADS  Google Scholar 

  • 6.

    Chabrier, G. in The Initial Mass Function 50 Years Later Astrophysics and Space Science Library Vol. 327 (eds Corbelli, E. et al.) (Springer, 2005).

  • 7.

    Haugbølle, T., Padoan, P., & Nordlund, Å. The stellar IMF from isothermal MHD turbulence. Astrophys. J. 854, 35 (2018).

    ADS  Google Scholar 

  • 8.

    Bate, M. R. The statistical properties of stars and their dependence on metallicity. Mon. Not. R. Astron. Soc. 484, 2341–2361 (2019).

    ADS  Google Scholar 

  • 9.

    Charbonneau, D., Brown, T. M., Latham, D. W. & Mayor, M. Detection of planetary transits across a Sun-like star. Astrophys. J. Lett. 529, L45–L48 (2000).

    ADS  Google Scholar 

  • 10.

    Lissauer, J. J. et al. A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470, 53–58 (2011).

    ADS  Google Scholar 

  • 11.

    Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201, 15 (2012).

    ADS  Google Scholar 

  • 12.

    Mayor, M. et al. The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. Preprint at https://arxiv.org/abs/1109.2497 (2011).

  • 13.

    Howard, A. W. et al. The California Planet Survey. I. Four new giant exoplanets. Astrophys. J. 721, 1467–1481 (2010).

    ADS  Google Scholar 

  • 14.

    Luhman, K. L., Esplin, T. L. & Loutrel, N. P. A census of young stars and brown dwarfs in IC 348 and NGC 1333. Astrophys. J. 827, 52 (2016).

    ADS  Google Scholar 

  • 15.

    Esplin, T. L. & Luhman, K. L. A survey for planetary-mass brown dwarfs in the Taurus and Perseus star-forming regions. Astron. J. 154, 134 (2017).

    ADS  Google Scholar 

  • 16.

    Zapatero Osorio, M. R., Béjar, V. J. S. & Peña Ramírez, K. Optical and near-infrared spectra of σ Orionis isolated planetary-mass objects. Astrophys. J. 842, 65 (2017).

    ADS  Google Scholar 

  • 17.

    Lodieu, N., Zapatero Osorio, M. R., Béjar, V. J. S. & Peña Ramírez, K. The optical + infrared L dwarf spectral sequence of young planetary-mass objects in the Upper Scorpius association. Mon. Not. R. Astron. Soc. 473, 2020–2059 (2018).

    ADS  Google Scholar 

  • 18.

    Esplin, T. L. & Luhman, K. L. A survey for new members of Taurus from stellar to planetary masses. Astron. J. 158, 54 (2019).

    ADS  Google Scholar 

  • 19.

    Liu, M. C. et al. The extremely red, young L dwarf PSO J318.5338-22.8603: a free-floating planetary-mass analog to directly imaged young gas-giant planets. Astrophys. J. Lett. 777, L20 (2013).

    ADS  Google Scholar 

  • 20.

    Kellogg, K. et al. A targeted search for peculiarly red L and T dwarfs in SDSS, 2MASS, and WISE: discovery of a possible L7 member of the TW Hydrae association. Astron. J. 150, 182 (2015).

    ADS  Google Scholar 

  • 21.

    Schneider, A. C., Windsor, J., Cushing, M. C., Kirkpatrick, J. D. & Wright, E. L. WISEA J114724.10-204021.3: a free-floating planetary mass member of the TW Hya association. Astrophys. J. Lett. 822, L1 (2016).

    ADS  Google Scholar 

  • 22.

    Best, W. M. J. et al. A search for L/T transition dwarfs with Pan-STARRS1 and WISE. III. Young L dwarf discoveries and proper motion catalogs in Taurus and Scorpius-Centaurus. Astrophys. J. 837, 95 (2017).

    ADS  Google Scholar 

  • 23.

    Kirkpatrick, J. D. et al. Preliminary trigonometric parallaxes of 184 late-T and Y dwarfs and an analysis of the field substellar mass function into the “planetary” mass regime. Astrophys. J. Suppl. Ser. 240, 19 (2019).

    ADS  Google Scholar 

  • 24.

    Kirkpatrick, J. D. et al. The field substellar mass function based on the full-sky 20 pc census of 525 L, T, and Y dwarfs. Astrophys. J. Suppl. Ser. 253, 7 (2021).

    ADS  Google Scholar 

  • 25.

    Padoan, P., & Nordlund, Å. The stellar initial mass function from turbulent fragmentation. Astrophys. J. 576, 870–879 (2002).

    ADS  Google Scholar 

  • 26.

    Hennebelle, P. & Chabrier, G. Analytical theory for the initial mass function: CO clumps and prestellar cores. Astrophys. J. 684, 395–410 (2008).

    ADS  Google Scholar 

  • 27.

    Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    ADS  Google Scholar 

  • 28.

    Boss, A. P. Formation of extrasolar giant planets: core accretion or disk instability? Earth Moon Planets 81, 19–26 (1998).

    ADS  Google Scholar 

  • 29.

    Bate, M. R., Bonnell, I. A. & Bromm, V. The formation mechanism of brown dwarfs. Mon. Not. R. Astron. Soc. 332, L65–L68 (2002).

    ADS  Google Scholar 

  • 30.

    Veras, D. & Raymond, S. N. Planet-planet scattering alone cannot explain the free-floating planet population. Mon. Not. R. Astron. Soc. 421, L117–L121 (2012).

    ADS  Google Scholar 

  • 31.

    Reipurth, B. & Clarke, C. The formation of brown dwarfs as ejected stellar embryos. Astron. J. 122, 432–439 (2001).

    ADS  Google Scholar 

  • 32.

    Whitworth, A. P. & Zinnecker, H. The formation of free-floating brown dwarves and planetary-mass objects by photo-erosion of prestellar cores. Astron. Astrophys. 427, 299–306 (2004).

    ADS  Google Scholar 

  • 33.

    Testi, L. et al. Brown dwarf disks with ALMA: evidence for truncated dust disks in Ophiuchus. Astron. Astrophys. 593, A111 (2016).

    Google Scholar 

  • 34.

    Fontanive, C. et al. A wide planetary-mass companion to a young low-mass brown dwarf in Ophiuchus. Astrophys. J. Lett. 905, L14 (2020).

    ADS  Google Scholar 

  • 35.

    Greene, T. P. & Meyer, M. R. An infrared spectroscopic survey of the rho Ophiuchi Young stellar cluster: masses and ages from the H-R diagram. Astrophys. J. 450, 233 (1995).

    ADS  Google Scholar 

  • 36.

    Sullivan, K. & Kraus, A. L. Undetected binary stars cause an observed mass-dependent age gradient in Upper Scorpius. Astrophys. J. 912, 137 (2021).

    ADS  Google Scholar 

  • 37.

    David, T. J. et al. Age determination in Upper Scorpius with eclipsing binaries. Astrophys. J. 872, 161 (2019).

    ADS  Google Scholar 

  • 38.

    Pecaut, M. J. & Mamajek, E. E. The star formation history and accretion-disc fraction among the K-type members of the Scorpius-Centaurus OB association. Mon. Not. R. Astron. Soc. 461, 794–815 (2016).

    ADS  Google Scholar 

  • 39.

    Bouy, H. et al. Dynamical analysis of nearby clusters. Automated astrometry from the ground: precision proper motions over a wide field. Astron. Astrophys. 554, A101 (2013).

    Google Scholar 

  • 40.

    Gaia Collaborationet al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  • 41.

    Brown, A. G. A., Arenou, F., van Leeuwen, F., Lindegren, L. & Luri, X. Considerations in making full use of the HIPPARCOS catalogue. In Hipparcos – Venice ’97 Special Publication 402 (eds Bonnet, R. M. et al.) 63–68 (ESA, 1997).

  • 42.

    Mužić, K., Scholz, A., Geers, V., Jayawardhana, R. & Tamura, M. Substellar Objects in Nearby Young Clusters (SONYC). V. New brown dwarfs in ρ Ophiuchi. Astrophys. J. 744, 134 (2012).

    ADS  Google Scholar 

  • 43.

    Ducourant, C. et al. Proper motion survey and kinematic analysis of the ρ Ophiuchi embedded cluster. Astron. Astrophys. 597, A90 (2017).

    Google Scholar 

  • 44.

    Esplin, T. L., Luhman, K. L., Miller, E. B. & Mamajek, E. E. A WISE survey of circumstellar disks in the Upper Scorpius association. Astron. J. 156, 75 (2018).

    ADS  Google Scholar 

  • 45.

    Damiani, F., Prisinzano, L., Pillitteri, I., Micela, G. & Sciortino, S. Stellar population of Sco OB2 revealed by Gaia DR2 data. Astron. Astrophys. 623, A112 (2019).

    ADS  Google Scholar 

  • 46.

    Lodieu, N., Hambly, N. C. & Cross, N. J. G. Exploring the planetary-mass population in the Upper Scorpius association. Mon. Not. R. Astron. Soc. 503, 2265–2279 (2021).

    ADS  Google Scholar 

  • 47.

    Baraffe, I., Homeier, D., Allard, F. & Chabrier, G. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron. Astrophys. 577, A42 (2015).

    ADS  Google Scholar 

  • 48.

    Marigo, P. et al. A New Generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 77 (2017).

    ADS  Google Scholar 

  • 49.

    Bardalez Gagliuffi, D. C. et al. The Ultracool SpeXtroscopic Survey. I. Volume-limited spectroscopic sample and luminosity function of M7-L5 ultracool dwarfs. Astrophys. J. 883, 205 (2019).

    ADS  Google Scholar 

  • 50.

    Gaia Collaborationet al. Gaia Early Data Release 3. The Gaia catalogue of nearby stars. Astron. Astrophys. 649, A6 (2021).

    Google Scholar 

  • 51.

    Olivares, J. et al. Ruprecht 147 DANCe. I. Members, empirical isochrone, luminosity, and mass distributions. Astron. Astrophys. 625, A115 (2019).

    Google Scholar 

  • 52.

    Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

    ADS  Google Scholar 

  • 53.

    Thies, I. & Kroupa, P. A discontinuity in the low-mass initial mass function. Astrophys. J. 671, 767–780 (2007).

    ADS  Google Scholar 

  • 54.

    Thies, I., Pflamm-Altenburg, J., Kroupa, P. & Marks, M. Characterizing the brown dwarf formation channels from the initial mass function and binary-star dynamics. Astrophys. J. 800, 72 (2015).

    ADS  Google Scholar 

  • 55.

    Fernandes, R. B., Mulders, G. D., Pascucci, I., Mordasini, C. & Emsenhuber, A. Hints for a turnover at the snow line in the giant planet occurrence rate. Astrophys. J. 874, 81 (2019).

    ADS  Google Scholar 

  • 56.

    Clanton, C. & Gaudi, B. S. Constraining the frequency of free-floating planets from a synthesis of microlensing, radial velocity, and direct imaging survey results. Astrophys. J. 834, 46 (2017).

    ADS  Google Scholar 

  • 57.

    Bowler, B. P. Imaging extrasolar giant planets. Publ. Astron. Soc. Pac. 128, 102001 (2016).

    ADS  Google Scholar 

  • 58.

    Suzuki, D. et al. The exoplanet mass-ratio function from the MOA-II Survey: discovery of a break and likely peak at a Neptune mass. Astrophys. J. 833, 145 (2016).

    ADS  Google Scholar 

  • 59.

    Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    ADS  Google Scholar 

  • 60.

    Wittenmyer, R. A. et al. Cool Jupiters greatly outnumber their toasty siblings: occurrence rates from the Anglo-Australian Planet Search. Mon. Not. R. Astron. Soc. 492, 377–383 (2020).

    ADS  Google Scholar 

  • 61.

    Cumming, A. et al. The Keck Planet Search: detectability and the minimum mass and orbital period distribution of extrasolar planets. Publ. Astron. Soc. Pac. 120, 531 (2008).

    ADS  Google Scholar 

  • 62.

    Butler, R. P. et al. Catalog of nearby exoplanets. Astrophys. J. 646, 505–522 (2006).

    ADS  Google Scholar 

  • 63.

    Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015).

    ADS  Google Scholar 

  • 64.

    Jurić, M. & Tremaine, S. Dynamical origin of extrasolar planet eccentricity distribution. Astrophys. J. 686, 603–620 (2008).

    ADS  Google Scholar 

  • 65.

    Chatterjee, S., Ford, E. B., Matsumura, S. & Rasio, F. A. Dynamical outcomes of planet-planet scattering. Astrophys. J. 686, 580–602 (2008).

    ADS  Google Scholar 

  • 66.

    Raymond, S. N., Armitage, P. J. & Gorelick, N. Planet-planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary systems. Astrophys. J. 711, 772–795 (2010).

    ADS  Google Scholar 

  • 67.

    Ford, E. B. & Rasio, F. A. Origins of eccentric extrasolar planets: testing the planet-planet scattering model. Astrophys. J. 686, 621–636 (2008).

    ADS  Google Scholar 

  • 68.

    Ida, S., Lin, D. N. C. & Nagasawa, M. Toward a deterministic model of planetary formation. VII. Eccentricity distribution of gas giants. Astrophys. J. 775, 42 (2013).

    ADS  Google Scholar 

  • 69.

    van Elteren, A., Portegies Zwart, S., Pelupessy, I., Cai, M. X. & McMillan, S. L. W. Survivability of planetary systems in young and dense star clusters. Astron. Astrophys. 624, A120 (2019).

    Google Scholar 

  • 70.

    Nesvorný, D. Dynamical evolution of the early Solar System. Annu. Rev. Astron. Astrophys. 56, 137–174 (2018).

    ADS  Google Scholar 

  • 71.

    Raymond, S. N., Izidoro, A. & Morbidelli, A. In Planetary Astrobiology (eds Meadows, V. et al.) 287-324 (University of Arizona Press, 2020).

  • 72.

    Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, K. J. Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).

    ADS  Google Scholar 

  • 73.

    Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).

    ADS  Google Scholar 

  • 74.

    Parker, R. J. & Quanz, S. P. The effects of dynamical interactions on planets in young substructured star clusters. Mon. Not. R. Astron. Soc. 419, 2448–2458 (2012).

    ADS  Google Scholar 

  • 75.

    Winter, A. J., Kruijssen, J. M. D., Longmore, S. N. & Chevance, M. Stellar clustering shapes the architecture of planetary systems. Nature 586, 528–532 (2020).

    ADS  Google Scholar 

  • 76.

    Hester, J. J. et al. Hubble Space Telescope WFPC2 imaging of M16: photoevaporation and emerging young stellar objects. Astron. J. 111, 2349 (1996).

    ADS  Google Scholar 

  • 77.

    Bouy, H. et al. A deep look into the cores of young clusters. I. σ-Orionis. Astron. Astrophys. 493, 931–946 (2009).

    ADS  Google Scholar 

  • 78.

    Hodapp, K. W., Iserlohe, C., Stecklum, B. & Krabbe, A. σ Orionis IRS1 A and B: a binary containing a proplyd. Astrophys. J. Lett. 701, L100–L104 (2009).

    ADS  Google Scholar 

  • 79.

    Paillassa, M., Bertin, E. & Bouy, H. MAXIMASK and MAXITRACK: two new tools for identifying contaminants in astronomical images using convolutional neural networks. Astron. Astrophys. 634, A48 (2020).

    ADS  Google Scholar 

  • 80.

    Vandame, B. New algorithms and technologies for the un-supervised reduction of Optical/IR images. In Astronomical Data Analysis II SPIE Conference Series Vol. 4787 (eds Starck, J.-L. & Murtagh, F. D.) 123–134 (SPIE, 2002).

  • 81.

    Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996).

    ADS  Google Scholar 

  • 82.

    Bertin, E. PSFEx: point spread function extractor (ASCL, 2013).

  • 83.

    Bertin, E. Automatic astrometric and photometric calibration with SCAMP. In Astronomical Data Analysis Software and Systems XV Astronomical Society of the Pacific Conference Series Vol. 351 (eds Gabriel, C. et al.) 112 (Astronomical Society of the Pacific, 2006).

  • 84.

    Bertin, E. SWarp: resampling and co-adding FITS images together (ASCL, 2010).

  • 85.

    Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007).

    ADS  Google Scholar 

  • 86.

    Baumgardt, H., Hilker, M., Sollima, A. & Bellini, A. Mean proper motions, space orbits, and velocity dispersion profiles of Galactic globular clusters derived from Gaia DR2 data. Mon. Not. R. Astron. Soc. 482, 5138–5155 (2019).

    ADS  Google Scholar 

  • 87.

    Sarro, L. M. et al. Cluster membership probabilities from proper motions and multi-wavelength photometric catalogues. I. Method and application to the Pleiades cluster. Astron. Astrophys. 563, A45 (2014).

    Google Scholar 

  • 88.

    Luhman, K. L., Herrmann, K. A., Mamajek, E. E., Esplin, T. L. & Pecaut, M. J. New young stars and brown dwarfs in the Upper Scorpius association. Astron. J. 156, 76 (2018).

    ADS  Google Scholar 

  • 89.

    Maíz Apellániz, J. & Weiler, M. Reanalysis of the Gaia Data Release 2 photometric sensitivity curves using HST/STIS spectrophotometry. Astron. Astrophys. 619, A180 (2018).

    ADS  Google Scholar 

  • 90.

    Miret-Roig, N. et al. IC 4665 DANCe. I. Members, empirical isochrones, magnitude distributions, present-day system mass function, and spatial distribution. Astron. Astrophys. 631, A57 (2019).

    Google Scholar 

  • 91.

    Olivares, J. et al. Kalkayotl: a cluster distance inference code. Astron. Astrophys. 644, A7 (2020).

    Google Scholar 

  • 92.

    Scott, D. W. Multivariate Density Estimation. Theory, Practice, and Visualization (Wiley, 1992).

  • 93.

    Silverman, B. W. Density Estimation (Chapman and Hall, 1986).

    MATH  Google Scholar 

  • 94.

    Baron, F. et al. Constraints on the occurrence and distribution of 1-20 MJup companions to stars at separations of 5-5000 au from a compilation of direct imaging surveys. Astron. J. 158, 187 (2019).

    ADS  Google Scholar 

  • 95.

    Clanton, C. & Gaudi, B. S. Synthesizing exoplanet demographics: a single population of long-period planetary companions to M dwarfs consistent with microlensing, radial velocity, and direct imaging surveys. Astrophys. J. 819, 125 (2016).

    ADS  Google Scholar 

  • 96.

    Planck Collaborationet al. Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 641, A1 (2020).

    Google Scholar 

  • Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    More Story on Source:

    *here*

    A rich population of free-floating planets in the Upper Scorpius young stellar association

    Dillard's - The Style of Your Life.

    By allaboutian

    open profile for all

    Related Posts

    960 people 👁️ing this randomly Tip #1: Your resume is your first impression. Make it…

    Just a moment…

    784 people 👁️ing this randomly Just a moment… Please enable Cookies and reload the page.…

    The University of Manchester | Jobs

    720 people 👁️ing this randomly The University of Manchester | Jobs Sackville Street, Manchester Try…