Try Adsterra Earnings, it’s 100% Authentic to make money more and more.
Akber, A. China Pakistan Economic Corridor (CPEC): Prospects and challenges for regional integeration. Arts Soc. Sci. J. 7(1), 1–15 (2015).
Hussain, Y. et al. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan. Theor. Appl. Climatol. 131(3), 1119–1132 (2018).
Li, J., Liu, Z., He, C., Yue, H. & Gou, S. Water shortages raised a legitimate concern over the sustainable development of the drylands of northern China: Evidence from the water stress index. Sci. Total Environ. 590–591, 739–750 (2017).
Bhatti, A. M., Suttinon, P. & Nasu, S. Agriculture water demand management in Pakistan: A review and perspective. Soc. Soc. Manag. Syst. (SSMS) 9, 1–7 (2009).
Howells, M. et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 3(7), 621–626 (2013).
Patil, A. & Tiwari, K. N. Okra crop response under subsurface drip and conventional furrow irrigation with varying N fertilization: Communications in soil. Soil Sci. Plant Anal. 49, 2429–2445 (2018).
Azam, A. & Shafique, M. Agriculture in Pakistan and its impact on economy: A review. Int. J. Adv. Sci. Technol. 103, 47–60 (2017).
Loucks, D. P. et al. Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications (UNESCO, 2005).
Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. 111(9), 3239–3244 (2014).
Puy, A. et al. The delusive accuracy of global irrigation water withdrawal estimates. Nat. Commun. 13(1), 1–4 (2022).
Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1, 96–99 (1985).
Maeda, E. E., Wiberg, D. A. & Pellikka, P. K. Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Appl. Geogr. 31, 251–258 (2011).
Er-Raki, S. et al. Assessment of reference evapotranspiration methods in semi–arid regions: Can weather forecast data be used as alternate of ground meteorological parameters?. J. Arid. Environ. 74, 1587–1596 (2010).
López-Urrea, R., de Santa Olalla, F. M., Fabeiro, C. & Moratalla, A. Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric. Water Manag. 85, 15–26 (2006).
Wei, B. Applicability evaluation of ET_0 calculation method in Cheerchen River Basin, Xinjiang. Water Sav. Irrig. 11, 36–38 (2016) (in Chinese).
Nazeer, M. Comparison of different methods for estimation of potential evapotranspiration. Nucleus 47, 41–46 (2010).
Pagano, A., Giordano, R., Portoghese, I., Fratino, U. & Vurro, M. A Bayesian vulnerability assessment tool for drinking water mains under extreme events. Nat. Hazards 74(3), 2193–2227 (2014).
Death, R. G., Death, F., Stubbington, R., Joy, M. K. & van den Belt, M. How good are Bayesian belief networks for environmental management? A test with data from an agricultural river catchment. Freshw. Biol. 60, 2297–2309 (2015).
Nash, D. & Hannah, M. Using Monte-Carlo simulations and Bayesian Networks to quantify and demonstrate the impact of fertiliser best management practices. Environ. Modell. Softw. 26, 1079–1088 (2011).
Fienen, M. N., Masterson, J. P., Plant, N. G., Gutierrez, B. T. & Thieler, E. R. Bridging groundwater models and decision support with a Bayesian network. Water Resour. Res. 49, 6459–6473 (2013).
Giordano, R., D’Agostino, D., Apollonio, C., Lamaddalena, N. & Vurro, M. Bayesian belief network to support conflict analysis for groundwater protection: The case of the Apulia region. J. Environ. Manage. 115, 136–146 (2013).
Mamitimin, Y., Feike, T. & Doluschitz, R. Bayesian network modeling to improve water pricing practices in northwest China. Water 7, 5617–5637 (2015).
Quinn, J. M., Monaghan, R. M., Bidwell, V. J. & Harris, S. R. A Bayesian Belief Network approach to evaluating complex effects of irrigation-driven agricultural intensification scenarios on future aquatic environmental and economic values in a New Zealand catchment. Mar. Freshw. Res. 64, 460–474 (2013).
Wang, M., Yang, Q., Zheng, J. H. & Liu, Z. H. Spatial and temporal distribution of water requirement of cotton in Xinjiang from 1963 to 2012. Acta Ecol. Sin. 36, 4122–4130 (2016) (in Chinese).
Naheed, G. & Rasul, G. Recent water requirement of cotton crop in Pakistan. Pak. J. Meteorol. 6, 75–84 (2010).
Peña-Arancibia, J. L., Stewart, J. P. & Kirby, J. M. Water balance trends in irrigated canal commands and its implications for sustainable water management in Pakistan: Evidence from 1981 to 2012. Agric. Water Manag. 245, 106648 (2021).
Zaidi, A. Z., Khan, N. A., Lashari, B. K., Laghari, F. A. & Panhwar, V. Agricultural water balance study in Sindh (Pakistan) 2 using satellite-derived actual evapotranspiration 3. Remote Sens. 30, 31 (2020).
Ahmad, M. & Farooq, U. The state of food security in Pakistan: Future challenges and coping strategies. Pak. Dev. Rev. 49, 903–923 (2010).
Abid, M., Schneider, U. A. & Scheffran, J. Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural Stud. 47, 254–266 (2016).
Khan, A. N. Analysis of 2010-flood causes, nature and magnitude in the Khyber Pakhtunkhwa, Pakistan. Nat. Hazards 66, 887–904 (2013).
Butt, A., Shabbir, R., Ahmad, S. S. & Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt J. Remote Sens. Space Sci. 18, 251–259 (2015).
Mahmood, N. et al. Wheat yield response to input and socioeconomic factors under changing climate: Evidence from rainfed environments of Pakistan. Sci. Total Environ. 688, 1275–1285 (2019).
Shen, Y., Li, S., Chen, Y., Qi, Y. & Zhang, S. Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989–2010. Agric. Water Manag. 128, 55–64 (2013).
Bashir, M. K., Schilizzi, S. & Pandit, R. Regional sensitivity of rural household food security: The case of Punjab, Pakistan. J. Anim. Plant Sci. 23(4), 1200–1206 (2013).
Yang, Z., Tang, J. & Yu, X. Xinjiang cotton industry present and countermeasures research. Res. Agric. Mod. 196, 298–302 (2013) (in Chinese).
Zhang, Q., Sun, P., Singh, V. P. & Chen, X. Spatial-temporal precipitation changes (1956–2000) and their implications for agriculture in China. Glob. Planet. Change 82, 86–95 (2012).
Cong, Z. T., Yao, B. Z. & Ni, G. H. Crop water demand in China under the SRA1B emissions scenario. Adv. Water Sci. 22, 38–43 (2011).
Iqbal, M. F. & Athar, H. Validation of satellite based precipitation over diverse topography of Pakistan. Atmos. Res. 201, 247–260 (2018).
Ullah, S., You, Q., Ullah, W. & Ali, A. Observed changes in precipitation in China-Pakistan economic corridor during 1980–2016. Atmos. Res. 210, 1–14 (2018).
Asmat, U. & Athar, H. Run-based multi-model interannual variability assessment of precipitation and temperature over Pakistan using two IPCC AR4–based AOGCMs. Theor. Appl. Climatol. 127, 1–16 (2017).
Deryng, D. et al. Rosenzweig Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Chang. 6, 786–790 (2016).
Winter, J. M. et al. Representing water scarcity in future agricultural assessments. Anthropocene 18, 15–26 (2017).
Zeng, R. et al. Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain. Agric. Water Manag. 256, 107063 (2021).
Fader, M., Shi, S., Bloh, W. V., Bondeau, A. & Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 20(2), 953–973 (2016).
Baloch, S.M. Water Crisis: Why is Pakistan Running Dry. https://www.dw.com/en/water-crisis-why-is-pakistan-running-dry/a-44110280 (2018).
Ranjan, A. Inter-Provincial water sharing conflicts in Pakistan. Pak. A J. Pak. Stud. 4, 102–122 (2012).
Haider, S. & Ullah, K. Projected crop water requirement over agro-climatically diversified region of Pakistan. Agric. For. Meteorol. 281, 107824 (2020).
Rehman, A., Chandio, A. A., Hussain, I. & Luan, J. Fertilizer consumption, water availability and credit distribution: Major factors affecting agricultural productivity in Pakistan. J. Saudi Soc. Agric. Sci. 18(3), 269–274 (2019).
Koondhar, M. A. et al. Asymmetric causality among carbon emission from agriculture, energy consumption, fertilizer, and cereal food production: A nonlinear analysis for Pakistan. Sustain. Energy Technol. Assess. 45, 101099 (2021).
Rehman, A. et al. Another outlook to sector-level energy consumption in Pakistan from dominant energy sources and correlation with economic growth. Environ. Sci. Pollut. Res. 28, 33735–33750 (2020).
Shah, M., Ara, J., Muhammad, S., Khan, S. & Tariq, S. Health risk assessment via surface water and sub-surface water consumption in the mafic and ultramafic terrain, Mohmand agency, northern Pakistan. J. Geochem. Explor. 118, 60–67 (2012).
Qureshi, A. S., McCornick, P. G., Qadir, M. & Aslam, Z. Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric. Water Manag. 95, 1–10 (2008).
Zulfiqar, F. & Thapa, G. B. Agricultural sustainability assessment at provincial level in Pakistan. Land Use Pol. 68, 492–502 (2017).
Li, Z., Fang, G., Chen, Y., Duan, W. & Mukanov, Y. Agricultural water demands in Central Asia under 1.5° C and 2.0° C global warming. Agric. Water Manag. 231, 106020 (2020).
Qureshi, M. E., Whitten, S. M., Mainuddin, M., Marvanek, S. & Elmahdi, A. A bio-physical and economic model of agriculture and water in the Murray-Darling Basin. Autralia. Environ. Model. Softw. 41, 98–106 (2013).
Rasul, G. & Mahmood, A. Performance evaluation of different methods for estimation of evapotranspiration in Pakistan’s climate. Pak. J. Meteorol. 5, 25–36 (2009).
Shi, H. et al. Coupling the water-energy-food-ecology nexus into a Bayesian network for water resources analysis and management in the Syr Darya River basin. J. Hydrol. 581, 124387 (2020).
Chen, J., Tao, H. & Liu, J. A daily meteorological dataset of the China-Pakistan Economic Corridor from 1961 to 2015. Sci. Data Bank 6, 229–238 (2021) (in Chinese).
Imran, A. & Saleh, S. Crop Development in Central Punjab, Faisalabad (2017–2018) (Ayub Agriculture Research Institute, 2008).
Kahlown, M. & Ashraf, M. Effect of shallow groundwater table on crop water requirements and crop yields. Agric. Water Manag. 76, 24–35 (2005).
Tariq, M. & Iqbal, H. Maize in Pakistan: An overview. Agric. Nat. Resour. 44, 757–763 (2010).
Rost, S. et al. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 44, W09405 (2008).
Li, Y. et al. Estimation of regional irrigation water requirements and water balance in Xinjiang, China during 1995–2017. PeerJ 8, e8243 (2020).
Marcot, B. G. Metrics for evaluating performance and uncertainty of Bayesian network models. Ecol. Modell. 230, 50–62 (2012).
Pollino, C. A., Woodberry, O., Nicholson, A., Korb, K. & Hart, B. T. Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment. Environ. Modell. Softw. 22, 1140–1152 (2007).
Barton, D., Saloranta, T., Moe, S., Eggestad, H. & Kuikka, S. Bayesian belief networks as a meta-modelling tool in integrated river basin management: Pros and cons in evaluating nutrient abatement decisions under uncertainty in a Norwegian river basin. Ecol. Econ. 66, 91–104 (2008).
Uusitalo, L. Advantages and challenges of Bayesian networks in environmental modelling. Ecol. Modell. 203, 312–318 (2007).