Categories
allPost

The ramp-up of interstellar medium enrichment at z > 4

297 people 👁️ing this randomly

The ramp-up of interstellar medium enrichment at z > 4

  • 1.

    Jorissen, A., Smith, V. V. & Lambert, D. L. Fluorine in red giant stars: evidence for nucleosynthesis. Astron. Astrophys. 261, 164–187 (1992).

    ADS  Google Scholar 

  • 2.

    Kobayashi, C., Karakas, A. I. & Umeda, H. The evolution of isotope ratios in the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 414, 3231–3250 (2011).

    ADS  Article  Google Scholar 

  • 3.

    Cunha, K., Smith, V. V., Lambert, D. L. & Hinkle, K. H. Fluorine abundances in the Large Magellanic Cloud and ω Centauri: evidence for neutrino nucleosynthesis? Astron. J. 126, 1305–1311 (2003).

    ADS  Article  Google Scholar 

  • 4.

    Forestini, M., Goriely, S., Jorissen, A. & Arnould, M. Fluorine production in thermal pulses on the asymptotic giant branch. Astron. Astrophys. 261, 157–163 (1992).

    ADS  Google Scholar 

  • 5.

    Woosley, S. E. & Haxton, W. C. Supernova neutrinos, neutral currents and the origin of fluorine. Nature 334, 45–47 (1988).

    ADS  Article  Google Scholar 

  • 6.

    Meynet, G. & Arnould, M. Synthesis of 19F in Wolf–Rayet stars. Astron. Astrophys. 355, 176–180 (2000).

    ADS  Google Scholar 

  • 7.

    Renda, A. et al. On the origin of fluorine in the Milky Way. Mon. Not. R. Astron. Soc. 354, 575–580 (2004).

    ADS  Article  Google Scholar 

  • 8.

    Spitoni, E., Matteucci, F., Jönsson, H., Ryde, N. & Romano, D. Fluorine in the solar neighborhood: chemical evolution models. Astron. Astrophys. 612, A16 (2018).

    ADS  Article  Google Scholar 

  • 9.

    Grisoni, V. et al. Fluorine in the solar neighbourhood: modelling the Galactic thick and thin discs. Mon. Not. R. Astron. Soc. 498, 1252–1258 (2020).

    ADS  Article  Google Scholar 

  • 10.

    Kobayashi, C. et al. Evolution of fluorine in the Galaxy with the ν-process. Astrophys. J. Lett. 739, L57 (2011).

    ADS  Article  Google Scholar 

  • 11.

    Fudamoto, Y. et al. The most distant, luminous, dusty star-forming galaxies: redshifts from NOEMA and ALMA spectral scans. Mon. Not. R. Astron. Soc. 472, 2028–2041 (2017).

    ADS  Article  Google Scholar 

  • 12.

    Rocca-Volmerange, B., Le Borgne, D., De Breuck, C., Fioc, M. & Moy, E. The radio galaxy Kz relation: the 1012 M⊙ mass limit. Masses of galaxies from the LK luminosity, up to z > 4. Astron. Astrophys. 415, 931–940 (2004).

    ADS  Article  Google Scholar 

  • 13.

    Monje, R. R. et al. Hydrogen fluoride toward luminous nearby galaxies: NGC 253 and NGC 4945. Astrophys. J. 785, 22 (2014).

    ADS  Article  Google Scholar 

  • 14.

    Lehnert, M. D. et al. Etching glass in the early Universe: luminous HF and H2O emission in a QSO–SMG pair at z = 4.7. Astron. Astrophys. 641, A124 (2020).

    Article  Google Scholar 

  • 15.

    Spilker, J. S. et al. Fast molecular outflow from a dusty star-forming galaxy in the early Universe. Science 361, 1016–1019 (2018).

    ADS  Article  Google Scholar 

  • 16.

    Neufeld, D. A., Wolfire, M. G. & Schilke, P. The chemistry of fluorine-bearing molecules in diffuse and dense interstellar gas clouds. Astrophys. J. 628, 260–274 (2005).

    ADS  Article  Google Scholar 

  • 17.

    Sonnentrucker, P. et al. Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: an ubiquitous tracer of molecular gas. Astron. Astrophys. 521, L12 (2010).

    ADS  Article  Google Scholar 

  • 18.

    Emprechtinger, M. et al. Hydrogen fluoride in high-mass star-forming regions. Astrophys. J. 756, 136 (2012).

    ADS  Article  Google Scholar 

  • 19.

    Kavak, Ü., van der Tak, F. F. S., Tielens, A. G. G. M. & Shipman, R. F. Origin of hydrogen fluoride emission in the Orion Bar. An excellent tracer for CO-dark H2 gas clouds. Astron. Astrophys. 631, A117 (2019).

    Article  Google Scholar 

  • 20.

    Gerin, M., Neufeld, D. A. & Goicoechea, J. R. Interstellar hydrides. Annu. Rev. Astron. Astrophys. 54, 181–225 (2016).

    ADS  Article  Google Scholar 

  • 21.

    Neufeld, D. A., Zmuidzinas, J., Schilke, P. & Phillips, T. G. Discovery of interstellar hydrogen fluoride. Astrophys. J. 488, L141–L144 (1997).

    ADS  Article  Google Scholar 

  • 22.

    Kawaguchi, K. et al. Detection of HF toward PKS 1830-211, search for interstellar H2F+, and laboratory study of H2F+ and H2Cl+ dissociative recombination. Astrophys. J. 822, 115 (2016).

    ADS  Article  Google Scholar 

  • 23.

    Monje, R. R. et al. Discovery of hydrogen fluoride in the Cloverleaf quasar at z = 2.56. Astrophys. J. Lett. 742, L21 (2011).

    ADS  Article  Google Scholar 

  • 24.

    Papadopoulos, P. P., Thi, W. F. & Viti, S. C i lines as tracers of molecular gas, and their prospects at high redshifts. Mon. Not. R. Astron. Soc. 351, 147–160 (2004).

    ADS  Article  Google Scholar 

  • 25.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Article  Google Scholar 

  • 26.

    Indriolo, N., Neufeld, D. A., Seifahrt, A. & Richter, M. J. Direct determination of the HF/H2 abundance ratio in interstellar gas. Astrophys. J. 764, 188 (2013).

    ADS  Article  Google Scholar 

  • 27.

    Pereira-Santaella, M. et al. Herschel/SPIRE submillimeter spectra of local active galaxies. Astrophys. J. 768, 55 (2013).

    ADS  Article  Google Scholar 

  • 28.

    Neufeld, D. A. et al. Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6-0.4 (W31C). Astron. Astrophys. 518, L108 (2010).

    ADS  Article  Google Scholar 

  • 29.

    Tacconi, L. J. et al. PHIBSS: unified scaling relations of gas depletion time and molecular gas fractions. Astrophys. J. 853, 179 (2018).

    ADS  Article  Google Scholar 

  • 30.

    Lugaro, M. et al. Reaction rate uncertainties and the production of 19F in asymptotic giant branch stars. Astrophys. J. 615, 934–946 (2004).

    ADS  Article  Google Scholar 

  • 31.

    Kobayashi, C., Karakas, A. I. & Lugaro, M. The origin of elements from carbon to uranium. Astrophys. J. 900, 179 (2020).

    ADS  Article  Google Scholar 

  • 32.

    Kobayashi, C., Tsujimoto, T. & Nomoto, K. The history of the cosmic supernova rate derived from the evolution of the host galaxies. Astrophys. J. 539, 26–38 (2000).

    ADS  Article  Google Scholar 

  • 33.

    Limongi, M. & Chieffi, A. Presupernova evolution and explosive nucleosynthesis of rotating massive stars in the metallicity range −3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. Ser. 237, 13 (2018).

    ADS  Article  Google Scholar 

  • 34.

    Ramírez-Agudelo, O. H. et al. The VLT-FLAMES Tarantula Survey. XII. Rotational velocities of the single O-type stars. Astron. Astrophys. 560, A29 (2013).

    Article  Google Scholar 

  • 35.

    Wiescher, M., Gorres, J., Thielemann, F. K. & Ritter, H. Explosive hydrogen burning in novae. Astron. Astrophys. 160, 56–72 (1986).

    ADS  Google Scholar 

  • 36.

    Ivison, R. J. et al. The space density of luminous dusty star-forming galaxies at z > 4: SCUBA-2 and LABOCA imaging of ultrared galaxies from Herschel-ATLAS. Astrophys. J. 832, 78 (2016).

    ADS  Article  Google Scholar 

  • 37.

    Eales, S. et al. The Herschel ATLAS. Publ. Astron. Soc. Pac. 122, 499–515 (2010).

    ADS  Article  Google Scholar 

  • 38.

    Griffin, M. J. et al. The Herschel-SPIRE instrument and its in-flight performance. Astron. Astrophys. 518, L3 (2010).

    ADS  Article  Google Scholar 

  • 39.

    Pilbratt, G. L. et al. Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 518, L1 (2010).

    ADS  Article  Google Scholar 

  • 40.

    Cox, P. et al. Gas and dust in a submillimeter galaxy at z = 4.24 from the Herschel Atlas. Astrophys. J. 740, 63 (2011).

    ADS  Article  Google Scholar 

  • 41.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Shaw, R. A. et al. (eds.) Astronomical Data Analysis Software and Systems XVI 127 (Astronomical Society of the Pacific Conference Series Vol. 376, 2007).

  • 42.

    Cornwell, T. J. Multiscale CLEAN deconvolution of radio synthesis images. IEEE J. Sel. Top. Signal Process. 2, 793–801 (2008).

    ADS  Article  Google Scholar 

  • 43.

    Condon, J. J. Errors in elliptical Gaussian fits. Publ. Astron. Soc. Pac. 109, 166–172 (1997).

    ADS  Article  Google Scholar 

  • 44.

    Martí-Vidal, I., Pérez-Torres, M. A. & Lobanov, A. P. Over-resolution of compact sources in interferometric observations. Astron. Astrophys. 541, A135 (2012).

    ADS  Article  Google Scholar 

  • 45.

    Boquien, M. et al. CIGALE: a Python Code Investigating GALaxy Emission. Astron. Astrophys. 622, A103 (2019).

    Article  Google Scholar 

  • 46.

    Kovács, A. et al. SHARC-2 350 μm observations of distant submillimeter-selected galaxies. Astrophys. J. 650, 592–603 (2006).

    ADS  Article  Google Scholar 

  • 47.

    Gordon, K. D. et al. Determining dust temperatures and masses in the Herschel era: the importance of observations longward of 200 micron. Astron. Astrophys. 518, L89 (2010).

    ADS  Article  Google Scholar 

  • 48.

    Kennicutt, J. & Robert, C. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).

    ADS  Article  Google Scholar 

  • 49.

    Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS  Article  Google Scholar 

  • 50.

    Papadopoulos, P. P. & Greve, T. R. C i emission in ultraluminous infrared galaxies as a molecular gas mass tracer. Astrophys. J. 615, L29–L32 (2004).

    ADS  Article  Google Scholar 

  • 51.

    Wagg, J., Wilner, D. J., Neri, R., Downes, D. & Wiklind, T. Atomic carbon in APM 08279+5255 at z = 3.91. Astrophys. J. 651, 46–50 (2006).

    ADS  Article  Google Scholar 

  • 52.

    Weiß, A., Henkel, C., Downes, D. & Walter, F. Gas and dust in the Cloverleaf quasar at redshift 2.5. Astron. Astrophys. 409, L41–L45 (2003).

    ADS  Article  Google Scholar 

  • 53.

    Bothwell, M. S. et al. ALMA observations of atomic carbon in z ~ 4 dusty star-forming galaxies. Mon. Not. R. Astron. Soc. 466, 2825–2841 (2017).

    ADS  Article  Google Scholar 

  • 54.

    Jiao, Q. et al. Neutral carbon emission in luminous infrared galaxies: the [C i] lines as total molecular gas tracers. Astrophys. J. Lett. 840, L18 (2017).

    ADS  Article  Google Scholar 

  • 55.

    Daddi, E. et al. Different star formation laws for disks versus starbursts at low and high redshifts. Astrophys. J. Lett. 714, L118–L122 (2010).

    ADS  Article  Google Scholar 

  • 56.

    Lagos, C. del P. et al. Molecular hydrogen abundances of galaxies in the EAGLE simulations. Mon. Not. R. Astron. Soc. 452, 3815–3837 (2015).

    ADS  Article  Google Scholar 

  • 57.

    Solomon, P. M. & Vanden Bout, P. A. Molecular gas at high redshift. Annu. Rev. Astron. Astrophys. 43, 677–725 (2005).

    ADS  Article  Google Scholar 

  • 58.

    da Cunha, E. et al. On the effect of the cosmic microwave background in high-redshift (sub-)millimeter observations. Astrophys. J. 766, 13 (2013).

    ADS  Article  Google Scholar 

  • 59.

    Ojha, R. et al. AST/RO observations of atomic carbon near the galactic center. Astrophys. J. 548, 253–257 (2001).

    ADS  Article  Google Scholar 

  • 60.

    Ikeda, M., Oka, T., Tatematsu, K., Sekimoto, Y. & Yamamoto, S. The distribution of atomic carbon in the Orion Giant Molecular Cloud 1. Astrophys. J. Suppl. Ser. 139, 467–485 (2002).

    ADS  Article  Google Scholar 

  • 61.

    González-Alfonso, E. et al. Molecular outflows in local ULIRGs: energetics from multitransition OH analysis. Astrophys. J. 836, 11 (2017).

    ADS  Article  Google Scholar 

  • 62.

    González-Alfonso, E., Fischer, J., Aalto, S. & Falstad, N. Modeling the H2O submillimeter emission in extragalactic sources. Astron. Astrophys. 567, A91 (2014).

    ADS  Article  Google Scholar 

  • 63.

    Planck Collaborationet al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  • 64.

    Palacios, A., Arnould, M. & Meynet, G. The thermonuclear production of 19F by Wolf–Rayet stars revisited. Astron. Astrophys. 443, 243–250 (2005).

    ADS  Article  Google Scholar 

  • 65.

    Prantzos, N., Abia, C., Limongi, M., Chieffi, A. & Cristallo, S. Chemical evolution with rotating massive star yields—I. The solar neighbourhood and the s-process elements. Mon. Not. R. Astron. Soc. 476, 3432–3459 (2018).

    ADS  Article  Google Scholar 

  • 66.

    Jönsson, H. et al. Chemical evolution of fluorine in the bulge. High-resolution K-band spectra of giants in three fields. Astron. Astrophys. 564, A122 (2014).

    Article  Google Scholar 

  • 67.

    Hezaveh, Y. D. et al. ALMA observations of SPT-discovered, strongly lensed, dusty, star-forming galaxies. Astrophys. J. 767, 132 (2013).

    ADS  Article  Google Scholar 

  • 68.

    Spilker, J. S. et al. ALMA imaging and gravitational lens models of South Pole Telescope—selected dusty, star-forming galaxies at high redshifts. Astrophys. J. 826, 112 (2016).

    ADS  Article  Google Scholar 

  • 69.

    van der Wiel, M. H. D., Naylor, D. A., Makiwa, G., Satta, M. & Abergel, A. Three-dimensional distribution of hydrogen fluoride gas toward NGC 6334 I and I(N). Astron. Astrophys. 593, A37 (2016).

    Article  Google Scholar 

  • 70.

    Rodgers, S. D. & Charnley, S. B. Chemical evolution in protostellar envelopes: cocoon chemistry. Astrophys. J. 585, 355–371 (2003).

    ADS  Article  Google Scholar 

  • 71.

    Jørgensen, J. K., Schöier, F. L. & van Dishoeck, E. F. Molecular freeze-out as a tracer of the thermal and dynamical evolution of pre- and protostellar cores. Astron. Astrophys. 435, 177–182 (2005).

    ADS  Article  Google Scholar 

  • 72.

    Rangwala, N. et al. Observations of Arp 220 using Herschel-SPIRE: an unprecedented view of the molecular gas in an extreme star formation environment. Astrophys. J. 743, 94 (2011).

    ADS  Article  Google Scholar 

  • 73.

    Pickett, H. M. et al. Submillimeter, millimeter and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).

    ADS  Article  Google Scholar 

  • 74.

    Phillips, T. G. et al. Herschel observations of EXtra-Ordinary Sources (HEXOS): detection of hydrogen fluoride in absorption towards Orion KL. Astron. Astrophys. 518, L109 (2010).

    ADS  Article  Google Scholar 

  • 75.

    van der Werf, P. P. et al. Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231. Astron. Astrophys. 518, L42 (2010).

    ADS  Article  Google Scholar 

  • 76.

    Agúndez, M. et al. HIFI detection of hydrogen fluoride in the carbon star envelope IRC +10216. Astron. Astrophys. 533, L6 (2011).

    ADS  Article  Google Scholar 

  • 77.

    van der Tak, F. F. S. et al. Detection of HF emission from the Orion Bar. Astron. Astrophys. 537, L10 (2012).

    ADS  Article  Google Scholar 

  • 78.

    Kamenetzky, J. et al. Herschel-SPIRE imaging spectroscopy of molecular gas in M82. Astrophys. J. 753, 70 (2012).

    ADS  Article  Google Scholar 

  • 79.

    Lu, N. et al. A Herschel Space Observatory spectral line survey of local luminous infrared galaxies from 194 to 671 microns. Astrophys. J. Suppl. Ser. 230, 1 (2017).

    ADS  Article  Google Scholar 

  • 80.

    Pérez-Beaupuits, J. P. et al. A thorough view of the nuclear region of NGC 253: combined Herschel, SOFIA, and APEX data set. Astrophys. J. 860, 23 (2018).

    ADS  Article  Google Scholar 

  • Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    More Story on Source:

    *here*

    The ramp-up of interstellar medium enrichment at z > 4

    Dillard's - The Style of Your Life.

    By allaboutian

    open profile for all

    Related Posts

    960 people 👁️ing this randomly Tip #1: Your resume is your first impression. Make it…

    Just a moment…

    784 people 👁️ing this randomly Just a moment… Please enable Cookies and reload the page.…

    The University of Manchester | Jobs

    720 people 👁️ing this randomly The University of Manchester | Jobs Sackville Street, Manchester Try…