Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples

285 people 👁️ing this randomly

Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples

  • Hiesinger, H. et al. Ages of mare basalts on the lunar nearside. J. Geophys. Res. 105, 29239–29275 (2000).

    ADS  Article  Google Scholar 

  • Hiesinger, H. et al. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. 108, 5065 (2003).

    Article  Google Scholar 

  • Hiesinger, H. et al. Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-frequency distribution measurements. J. Geophys. Res. 115, E03003 (2010).

    ADS  Article  Google Scholar 

  • Whitten, J. et al. Lunar mare deposits associated with the Orientale impact basin: new insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1. J. Geophys. Res. 116, E00G9 (2011).

    Article  Google Scholar 

  • Kirchoff, M. R. et al. Ages of large lunar impact craters and implications for bombardment during the Moon’s middle age. Icarus 225, 325–341 (2013).

    ADS  Article  Google Scholar 

  • Yue, Z. et al. Refined model age for Orientale Basin derived from zonal crater dating of its ejecta. Icarus 346, 113804 (2020).

    Article  Google Scholar 

  • Ivanov, B. A. Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001).

    ADS  Article  Google Scholar 

  • Michael, G. G. Planetary surface dating from crater size–frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting. Icarus 226, 885–890 (2013).

    ADS  Article  Google Scholar 

  • Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001).

    ADS  Article  Google Scholar 

  • Neukum, G., Ivanov, B. A. & Hartmann, W. K. Cratering records in the Inner Solar System in relation to thelunar reference. Space Sci. Rev. 96, 55–86 (2001).

    ADS  Article  Google Scholar 

  • Hartmann, W. K. Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005).

    ADS  Article  Google Scholar 

  • Hartmann, W. K. & Daubar, I. J. Martian cratering 11. Utilizing decameter scale crater populations to study Martian history. Meteorit. Planet. Sci. 52, 493–510 (2017).

    ADS  Article  Google Scholar 

  • Neukum, G. Meteorite Bombardment and Dating of Planetary Surfaces. Habilitation thesis, Univ. Munich (1983).

  • Li, Q. L. et al. Two billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).

    ADS  Article  Google Scholar 

  • Wang, J. et al. Localization of the Chang’e-5 lander using radio-tracking and image-based methods. Remote Sens. 13, 590–601 (2021).

    ADS  Article  Google Scholar 

  • Qian, Y. et al. The regolith properties of the Chang’e-5 landing region and the ground drilling experiments using lunar regolith simulants. Icarus 337, 113508 (2020).

    Article  Google Scholar 

  • Qian, Y. et al. Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum. Earth Planet. Sci. Lett. 555, 116702 (2021).

    Article  Google Scholar 

  • Yue, Z. et al. Lunar regolith thickness deduced from concentric craters in the CE-5 landing area. Icarus 329, 46–54 (2019).

    ADS  Article  Google Scholar 

  • Jia, M. et al. A catalogue of impact craters larger than 200 m and surface age analysis in the Chang’e-5 landing area. Earth Planet. Sci. Lett. 541, 116272 (2020).

    Article  Google Scholar 

  • Hu, S. et al. A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature 600, 49–53 (2021).

    ADS  Article  Google Scholar 

  • Qian, Y. Q. et al. Geology and scientific significance of the Rümker region in northern Oceanus Procellarum: China’s Chang’E-5 landing region. J. Geophys. Res. Planets 123, 1407–1430 (2018).

    ADS  Article  Google Scholar 

  • Wu, B. et al. Rock abundance and crater density in the candidate Chang’E-5 landing region on the Moon. J. Geophys. Res. Planets 123, 3256–3272 (2018).

    ADS  Article  Google Scholar 

  • Hiesinger, H. et al. How old are young lunar craters? J. Geophys. Res. 117, E00H10 (2012).

    Article  Google Scholar 

  • Wagner, R., Head, J. W. III, Wolf, U. & Neukum, G. Stratigraphic sequence and ages of volcanic units in the Gruithuisen region of the Moon. J. Geophys. Res. 107, E00H10 (2002).

    Google Scholar 

  • Le Feuvre, M. & Wieczorek, M. A. Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214, 1–20 (2011).

    ADS  Article  Google Scholar 

  • Marchi, S. et al. A New chronology for the Moon and Mercury. Astrophys. J. 137, 4936–4948 (2009).

    Google Scholar 

  • Robbins, S. J. New crater calibrations for the lunar crater-age chronology. Earth Planet. Sci. Lett. 403, 188–198 (2014).

    ADS  Article  Google Scholar 

  • Marchi, S. et al. Small crater populations on Vesta. Planet. Space Sci. 103, 96–103 (2014).

    ADS  Article  Google Scholar 

  • Schmedemann, N. et al. The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planet. Space Sci. 103, 104–130 (2014).

    ADS  Article  Google Scholar 

  • Chapman, C. R. et al. Cratering on Ida. Icarus 120, 77–86 (1996).

    ADS  Article  Google Scholar 

  • Shoemaker, E. M., Hackman, R. J. & Eggleton, R. E. Interplanetary correlation of geologic time. Adv. Astronaut. Sci. 8, 70–79 (1962).

    Google Scholar 

  • Michael, G. G. & Neukum, G. Planetary surface dating from crater size–frequency distribution measurements: partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 294, 223–229 (2010).

    ADS  Article  Google Scholar 

  • Stöffler, D. & Ryder, G. Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci. Rev. 96, 9–54 (2001).

    ADS  Article  Google Scholar 

  • Hartmann, W. K. Martian cratering VI: crater count isochrons and evidence for recent volcanism from Mars Global Surveyor. Meteorit. Planet. Sci. 34, 167–177 (1999).

    ADS  Article  Google Scholar 

  • Morota, T., Ukai, T. & Furumoto, M. Influence of the asymmetrical cratering rate on the lunar cratering chronology. Icarus 173, 322–332 (2005).

    ADS  Article  Google Scholar 

  • Le Feuvre, M. & Wieczorek, M. A. Nonuniform cratering of the terrestrial planets. Icarus 197, 291–306 (2008).

    ADS  Article  Google Scholar 

  • Gallant, J., Gladman, B. & Cuk, M. Current bombardment of the Earth-Moon system: emphasis on cratering asymmetries. Icarus 202, 371–382 (2009).

    ADS  Article  Google Scholar 

  • Coleman, T. F. & Li, Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996).

    MathSciNet  Article  Google Scholar 

  • Coleman, T. F. & Li, Y. On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math. Program. 67, 189–224 (1994).

    Article  Google Scholar 

  • Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    More Story on Source:

    *here*

    Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples

    Published By

    allaboutian
    allaboutian
    open profile for all
    Latest entries

    Dillard's - The Style of Your Life.

    By allaboutian

    open profile for all

    Related Posts

    885 people 👁️ing this randomly Tip #1: Your resume is your first impression. Make it…

    Just a moment…

    783 people 👁️ing this randomly Just a moment… Please enable Cookies and reload the page.…

    The University of Manchester | Jobs

    719 people 👁️ing this randomly The University of Manchester | Jobs Sackville Street, Manchester Try…