Planetesimal rings as the cause of the Solar System’s planetary architecture

107 people 👁️ing this randomly

Planetesimal rings as the cause of the Solar System’s planetary architecture

  • 1.

    DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014).

    ADS  Google Scholar 

  • 2.

    Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020).

    ADS  Article  Google Scholar 

  • 3.

    Grewal, D. S., Dasgupta, R. & Marty, B. A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets. Nat. Astron. 5, 356–364 (2021).

    ADS  Google Scholar 

  • 4.

    Brasser, R. & Mojzsis, S. J. The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nat. Astron. 4, 492–499 (2020).

    ADS  Google Scholar 

  • 5.

    Birnstiel, T., Klahr, H. & Ercolano, B. A simple model for the evolution of the dust population in protoplanetary disks. Astron. Astrophys. 539, A148 (2012).

    ADS  MATH  Google Scholar 

  • 6.

    Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    ADS  Google Scholar 

  • 7.

    Raymond, S. N. & Izidoro, A. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017).

    ADS  Google Scholar 

  • 8.

    Huang, J. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of annular substructures. Astrophys. J. Lett. 869, L42 (2018).

    ADS  Google Scholar 

  • 9.

    Dullemond, C. P. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust trapping in thin-ringed protoplanetary disks. Astrophys. J. Lett. 869, L46 (2018).

    ADS  Google Scholar 

  • 10.

    Johansen, A. et al. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).

    ADS  Google Scholar 

  • 11.

    Müller, J., Savvidou, S. & Bitsch, B. The water-ice line as a birthplace of planets: implications of a species-dependent dust fragmentation threshold. Astron. Astrophys. 650, A185 (2021).

    ADS  Google Scholar 

  • 12.

    Charnoz, S., Avice, G., Hyodo, R., Pignatale, F. C. & Chaussidon, M. Forming pressure traps at the snow line to isolate isotopic reservoirs in the absence of a planet. Astron. Astrophys. 652, A35 (2021).

    ADS  Google Scholar 

  • 13.

    Gundlach, B. & Blum, J. The stickiness of micrometer-sized water-ice particles. Astrophys. J. 798, 34 (2015).

    ADS  Google Scholar 

  • 14.

    Desch, S. J. & Turner, N. J. High-temperature ionization in protoplanetary disks. Astrophys. J. 811, 156 (2015).

    ADS  Google Scholar 

  • 15.

    Flock, M., Fromang, S., Turner, N. J. & Benisty, M. 3D radiation nonideal magnetohydrodynamical simulations of the inner rim in protoplanetary disks. Astrophys. J. 835, 230 (2017).

    ADS  Google Scholar 

  • 16.

    Qi, C. et al. Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013).

    ADS  Google Scholar 

  • 17.

    van ’t Hoff, M. L. R., Walsh, C., Kama, M., Facchini, S. & van Dishoeck, E. F. Robustness of N2H+ as tracer of the CO snowline. Astron. Astrophys. 599, A101 (2017).

    Google Scholar 

  • 18.

    Pinilla, P. et al. Trapping dust particles in the outer regions of protoplanetary disks. Astron. Astrophys. 538, A114 (2012).

    Google Scholar 

  • 19.

    Dittrich, K., Klahr, H. & Johansen, A. Gravoturbulent planetesimal formation: the positive effect of long-lived zonal flows. Astrophys. J. 763, 117 (2013).

    ADS  Google Scholar 

  • 20.

    Izidoro, A., Bitsch, B. & Dasgupta, R. The effect of a strong pressure bump in the Sun’s natal disk: terrestrial planet formation via planetesimal accretion rather than pebble accretion. Astrophys. J. 915, 62 (2021).

    ADS  Google Scholar 

  • 21.

    Dra̧żkowska, J. & Alibert, Y. Planetesimal formation starts at the snow line. Astron. Astrophys. 608, A92 (2017).

    ADS  Google Scholar 

  • 22.

    Simon, J. B., Armitage, P. J., Li, R. & Youdin, A. N. The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016).

    ADS  Google Scholar 

  • 23.

    Chambers, J. A semi-analytic model for oligarchic growth. Icarus 180, 496–513 (2006).

    ADS  Google Scholar 

  • 24.

    Tanaka, H., Takeuchi, T. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002).

    ADS  Google Scholar 

  • 25.

    Lambrechts, M. et al. Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode. Astron. Astrophys. 627, A83 (2019).

    Google Scholar 

  • 26.

    Hansen, B. M. S. Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009).

    ADS  Google Scholar 

  • 27.

    Izidoro, A., Haghighipour, N., Winter, O. ~C. & Tsuchida, M. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of Mars. Astrophys. J. 782, 31 (2014).

    ADS  Google Scholar 

  • 28.

    Izidoro, A., Raymond, S. N., Morbidelli, A. & Winter, O. C. Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. R. Astron. Soc. 453, 3619–3634 (2015).

    ADS  Google Scholar 

  • 29.

    Levison, H. F., Kretke, K. A. & Duncan, M. J. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015).

    ADS  Google Scholar 

  • 30.

    Raymond, S. N. & Izidoro, A. The empty primordial asteroid belt. Sci. Adv. 3, e1701138 (2017).

    ADS  Google Scholar 

  • 31.

    Morbidelli, A. et al. Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016).

    ADS  Google Scholar 

  • 32.

    Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    ADS  Google Scholar 

  • 33.

    Dauphas, N. et al. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet. Sci. Lett. 407, 96–108 (2014).

    ADS  Google Scholar 

  • 34.

    Wittmann, A. et al. Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475. Meteorit. Planet. Sci. 50, 326–352 (2015).

    ADS  Google Scholar 

  • 35.

    Lodders, K. An oxygen isotope mixing model for the accretion and composition of rocky planets. Space Sci. Rev. 92, 341–354 (2000).

    ADS  Google Scholar 

  • 36.

    Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    ADS  Google Scholar 

  • 37.

    Brasser, R., Mojzsis, S. J., Matsumura, S. & Ida, S. The cool and distant formation of Mars. Earth Planet. Sci. Lett. 468, 85–93 (2017).

    ADS  Google Scholar 

  • 38.

    Bottke, W. F., Nesvorný, D., Grimm, R. E., Morbidelli, A. & O’Brien, D. P. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006).

    ADS  Google Scholar 

  • 39.

    Chambers, J. E. Making more terrestrial planets. Icarus 152, 205–224 (2001).

    ADS  Google Scholar 

  • 40.

    Kokubo, E. & Ida, S. Formation of protoplanet systems and diversity of planetary systems. Astrophys. J. 581, 666–680 (2002).

    ADS  Google Scholar 

  • 41.

    Bus, S. J. & Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey. A feature-based taxonomy. Icarus 158, 146–177 (2002).

    ADS  Google Scholar 

  • 42.

    Urey, H. C. The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proc. Natl Acad. Sci. USA 41, 127–144 (1955).

    ADS  Google Scholar 

  • 43.

    Vernazza, P., Zanda, B., Nakamura, T., Scott, E. R. D. & Russell, S. In The Formation and Evolution of Ordinary Chondrite Parent Bodies (eds Bottke, W. F., DeMeo, F. E. & Michel, P.) 617–634 (University of Arizona Press, 2015).

  • 44.

    Weiss, B. P. & Elkins-Tanton, L. T. Differentiated planetesimals and the parent bodies of chondrites. Annu. Rev. Earth Planet. Sci. 41, 529–560 (2013).

    ADS  Google Scholar 

  • 45.

    Neumann, W., Kruijer, T. S., Breuer, D. & Kleine, T. Multistage core formation in planetesimals revealed by numerical modeling and Hf–W chronometry of iron meteorites. J. Geophys. Res. Planets 123, 421–444 (2018).

    ADS  Google Scholar 

  • 46.

    Sanders, I. S. & Scott, E. R. D. The origin of chondrules and chondrites: debris from low-velocity impacts between molten planetesimals? Meteorit. Planet. Sci. 47, 2170–2192 (2012).

    ADS  Google Scholar 

  • 47.

    Moskovitz, N. & Gaidos, E. Differentiation of planetesimals and the thermal consequences of melt migration. Meteorit. Planet. Sci. 46, 903–918 (2011).

    ADS  Google Scholar 

  • 48.

    Asphaug, E., Jutzi, M. & Movshovitz, N. Chondrule formation during planetesimal accretion. Earth Planet. Sci. Lett. 308, 369–379 (2011).

    ADS  Google Scholar 

  • 49.

    Desch, S. J. & Connolly, J. H. C. A model of the thermal processing of particles in solar nebula shocks: application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183–207 (2002).

    ADS  Google Scholar 

  • 50.

    Yang, C. C., Johansen, A. & Carrera, D. Concentrating small particles in protoplanetary disks through the streaming instability. Astron. Astrophys. 606, A80 (2017).

    Google Scholar 

  • 51.

    Kunitomo, M., Guillot, T., Ida, S. & Takeuchi, T. Revisiting the pre-main-sequence evolution of stars. II. Consequences of planet formation on stellar surface composition. Astron. Astrophys. 618, A132 (2018).

    ADS  Google Scholar 

  • 52.

    Izidoro, A., Morbidelli, A., Raymond, S. N., Hersant, F. & Pierens, A. Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astron. Astrophys. 582, A99 (2015).

    ADS  Google Scholar 

  • 53.

    Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).

    ADS  Google Scholar 

  • 54.

    Nesvorný, D. Dynamical evolution of the early Solar System. Annu. Rev. Astron. Astrophys. 56, 137–174 (2018).

    ADS  Google Scholar 

  • 55.

    Deienno, R., Morbidelli, A., Gomes, R. S. & Nesvorný, D. Constraining the giant planets’ initial configuration from their evolution: implications for the timing of the planetary instability. Astron. J. 153, 153 (2017).

    ADS  Google Scholar 

  • 56.

    Nesvorný, D. et al. OSSOS XX: the meaning of Kuiper Belt colors. Astron. J. 160, 46 (2020).

    ADS  Google Scholar 

  • 57.

    Gladman, B., Marsden, B. G. & Vanlaerhoven, C. In The Solar System Beyond Neptune (eds Barucci, M. A., Boehnhardt, H., Cruikshank, D. P. & Morbidelli, A.) 43–57 (University of Arizona Press, 2008).

  • 58.

    Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    ADS  Google Scholar 

  • 59.

    Mayor, M. et al. The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. Preprint at https://arxiv.org/abs/1109.2497 (2011).

  • 60.

    Izidoro, A. et al. Formation of planetary systems by pebble accretion and migration. Hot super-Earth systems from breaking compact resonant chains. Astron. Astrophys. 650, A152 (2021).

    Google Scholar 

  • 61.

    Morbidelli, A. Planet formation by pebble accretion in ringed disks. Astron. Astrophys. 638, A1 (2020).

    ADS  Google Scholar 

  • 62.

    Lambrechts, M., Johansen, A. & Morbidelli, A. Separating gas-giant and ice-giant planets by halting pebble accretion. Astron. Astrophys. 572, A35 (2014).

    ADS  Google Scholar 

  • 63.

    Raymond, S. N., Izidoro, A. & Morbidelli, A. In Solar System Formation in the Context of Extra-Solar Planets inPlanetary Astrobiology (eds Meadows, V. S., Arney, G. N., Schmidt, B. E. & Des Marais, D. J.) (University of Arizona Press, 2020).

  • 64.

    Pinilla, P., Pohl, A., Stammler, S. M. & Birnstiel, T. Dust density distribution and imaging analysis of different ice lines in protoplanetary disks. Astrophys. J. 845, 68 (2017).

    ADS  Google Scholar 

  • 65.

    Dra̧żkowska, J. & Dullemond, C. P. Planetesimal formation during protoplanetary disk buildup. Astron. Astrophys. 614, A62 (2018).

    ADS  Google Scholar 

  • 66.

    Ueda, T., Flock, M. & Okuzumi, S. Dust pileup at the dead-zone inner edge and implications for the disk shadow. Astrophys. J. 871, 10 (2019).

    ADS  Google Scholar 

  • 67.

    Ida, S., Guillot, T. & Morbidelli, A. The radial dependence of pebble accretion rates: a source of diversity in planetary systems. I. Analytical formulation. Astron. Astrophys. 591, A72 (2016).

    ADS  Google Scholar 

  • 68.

    Zhang, Y. & Jin, L. The evolution of the snow line in a protoplanetary disk. Astrophys. J. 802, 58 (2015).

    ADS  Google Scholar 

  • 69.

    Zhang, K., Blake, G. A. & Bergin, E. A. Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. Astrophys. J. Lett. 806, L7 (2015).

    ADS  Google Scholar 

  • 70.

    Baillié, K., Marques, J. & Piau, L. Building protoplanetary disks from the molecular cloud: redefining the disk timeline. Astron. Astrophys. 624, A93 (2019).

    ADS  Google Scholar 

  • 71.

    Bitsch, B., Morbidelli, A., Lega, E. & Crida, A. Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs. Astron. Astrophys. 564, A135 (2014).

    ADS  Google Scholar 

  • 72.

    Ziampras, A., Ataiee, S., Kley, W., Dullemond, C. P. & Baruteau, C. The impact of planet wakes on the location and shape of the water ice line in a protoplanetary disk. Astron. Astrophys. 633, A29 (2020).

    ADS  Google Scholar 

  • 73.

    Birnstiel, T., Andrews, S. M., Pinilla, P. & Kama, M. Dust evolution can produce scattered light gaps in protoplanetary disks. Astrophys. J. Lett. 813, L14 (2015).

    ADS  Google Scholar 

  • 74.

    Drążkowska, J., Alibert, Y. & Moore, B. Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, A105 (2016).

    ADS  Google Scholar 

  • 75.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Google Scholar 

  • 76.

    Desch, S. J., Kalyaan, A. & O’D. Alexander, C. M. The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophys. J. Suppl. Ser. 238, 11 (2018).

    ADS  Google Scholar 

  • 77.

    Pinilla, P., Lenz, C. T. & Stammler, S. M. Growing and trapping pebbles with fragile collisions of particles in protoplanetary disks. Astron. Astrophys. 645, A70 (2021).

    ADS  Google Scholar 

  • 78.

    Schneider, A. D. & Bitsch, B. How drifting and evaporating pebbles shape giant planets. I. Heavy element content and atmospheric C/O. Astron. Astrophys. 654, A71 (2021).

    ADS  Google Scholar 

  • 79.

    Lenz, C. T., Klahr, H., Birnstiel, T., Kretke, K. & Stammler, S. Constraining the parameter space for the solar nebula. The effect of disk properties on planetesimal formation. Astron. Astrophys. 640, A61 (2020).

    ADS  Google Scholar 

  • 80.

    Lenz, C. T., Klahr, H. & Birnstiel, T. Planetesimal population synthesis: pebble flux-regulated planetesimal formation. Astrophys. J. 874, 36 (2019).

    ADS  Google Scholar 

  • 81.

    Okuzumi, S. & Hirose, S. Planetesimal formation in magnetorotationally dead zones: critical dependence on the net vertical magnetic flux. Astrophys. J. Lett. 753, L8 (2012).

    ADS  Google Scholar 

  • 82.

    Lynden-Bell, D. & Pringle, J. E. The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 603–637 (1974).

    ADS  Google Scholar 

  • 83.

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

  • 84.

    Bai, X.-N. & Stone, J. M. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence. Astrophys. J. 796, 31 (2014).

    ADS  Google Scholar 

  • 85.

    Gerbig, K., Lenz, C. T. & Klahr, H. Linking planetesimal and dust content in protoplanetary disks via a local toy model. Astron. Astrophys. 629, A116 (2019).

    ADS  Google Scholar 

  • 86.

    Ormel, C. W. & Klahr, H. H. The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010).

    ADS  Google Scholar 

  • 87.

    Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017).

    ADS  Google Scholar 

  • 88.

    Walsh, K. J. & Levison, H. F. Planetesimals to terrestrial planets: collisional evolution amidst a dissipating gas disk. Icarus 329, 88–100 (2019).

    ADS  Google Scholar 

  • 89.

    Deienno, R., Walsh, K. J., Kretke, K. A. & Levison, H. F. Energy dissipation in large collisions—no change in planet formation outcomes. Astrophys. J. 876, 103 (2019).

    ADS  Google Scholar 

  • 90.

    Morbidelli, A. & Crida, A. The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007).

    ADS  Google Scholar 

  • 91.

    Raymond, S. N., Quinn, T. & Lunine, J. I. Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004).

    ADS  Google Scholar 

  • 92.

    O’Brien, D. P., Morbidelli, A. & Levison, H. F. Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006).

    ADS  Google Scholar 

  • 93.

    Levison, H. F., Duncan, M. J. & Thommes, E. A Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD). Astron. J. 144, 119 (2012).

    ADS  Google Scholar 

  • 94.

    Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    ADS  Google Scholar 

  • Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    More Story on Source:

    *here*

    Planetesimal rings as the cause of the Solar System’s planetary architecture

    Dillard's - The Style of Your Life.

    By allaboutian

    open profile for all

    Related Posts

    976 people 👁️ing this randomly Tip #1: Your resume is your first impression. Make it…

    Just a moment…

    801 people 👁️ing this randomly Just a moment… Please enable Cookies and reload the page.…

    The University of Manchester | Jobs

    733 people 👁️ing this randomly The University of Manchester | Jobs Sackville Street, Manchester Try…