Multi-scale feedback and feeding in the closest radio galaxy Centaurus A

91 people 👁️ing this randomly

Multi-scale feedback and feeding in the closest radio galaxy Centaurus A

  • 1.

    King, A. & Pounds, K. Powerful outflows and feedback from active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 115–154 (2015).

    ADS  Google Scholar 

  • 2.

    Veilleux, S., Maiolino, R., Bolatto, A. & Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 28, 2 (2020).

    ADS  Google Scholar 

  • 3.

    Nelson, D. et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 490, 3234–3261 (2019).

    ADS  Google Scholar 

  • 4.

    Heckman, T. et al. COS-burst: observations of the impact of starburst-driven winds on the properties of the circum-galactic medium. Astrophys. J. 846, 151 (2017).

    ADS  Google Scholar 

  • 5.

    Israel, F. P. & Centaurus, A.- Centaurus A–NGC 5128. Astron. Astrophys. Rev. 8, 237–278 (1998).

    ADS  Google Scholar 

  • 6.

    Feain, I. J. (ed.) The many faces of Centaurus A. Publ. Astron. Soc. Aust. 27(Special issue), 379-495 (2010).

  • 7.

    Feain, I. J. et al. The radio continuum structure of Centaurus A at 1.4 GHz. Astrophys. J. 740, 17 (2011).

    ADS  Google Scholar 

  • 8.

    Neff, S. G., Eilek, J. A. & Owen, F. N. The complex north transition region of Centaurus A: radio structure. Astrophys. J. 802, 87 (2015).

    ADS  Google Scholar 

  • 9.

    Gaspari, M., Tombesi, F. & Cappi, M. Linking macro, meso, and micro scales in multiphase AGN feeding and feedback. Nat. Astron. 4, 10–13 (2020).

    ADS  Google Scholar 

  • 10.

    Gaspari, M., Ruszkowski, M. & Oh, S. P. Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 432, 3401–3422 (2013).

    ADS  Google Scholar 

  • 11.

    Harris, G. L. H., Rejkuba, M. & Harris, W. E. The distance to NGC 5128 (Centaurus A). Publ. Astron. Soc. Aust. 27, 457–462 (2010).

    ADS  Google Scholar 

  • 12.

    Clarke, D. A., Burns, J. O. & Norman, M. L. VLA observations of the inner lobes of Centaurus A. Astrophys. J. 395, 444 (1992).

    ADS  Google Scholar 

  • 13.

    Tingay, S. J. et al. The subparsec-scale structure and evolution of Centaurus A: the nearest active radio galaxy. Astron. J. 115, 960–974 (1998).

    ADS  Google Scholar 

  • 14.

    Janssen, M. et al. Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nat. Astron. 5, 1017–1028 (2021).

    ADS  Google Scholar 

  • 15.

    Tingay, S. J. et al. The Murchison Widefield Array: the Square Kilometre Array precursor at low radio frequencies. Publ. Astron. Soc. Aust. 30, 7 (2013).

    ADS  Google Scholar 

  • 16.

    Gaspari, M., Brighenti, F., D’Ercole, A. & Melioli, C. AGN feedback in galaxy groups: the delicate touch of self-regulated outflows. Mon. Not. R. Astron. Soc. 415, 1549–1568 (2011).

    ADS  Google Scholar 

  • 17.

    Gaspari, M. & Sądowski, A. Unifying the micro and macro properties of AGN feeding and feedback. Astrophys. J. 837, 149 (2017).

    ADS  Google Scholar 

  • 18.

    Krause, M. et al. A new connection between the jet opening angle and the large-scale morphology of extragalactic radio sources. Mon. Not. R. Astron. Soc. 427, 3196–3208 (2012).

    ADS  Google Scholar 

  • 19.

    Morganti, R., Killeen, N. E. B., Ekers, R. D. & Oosterloo, T. A. Centaurus A: multiple outbursts or bursting bubble? Mon. Not. R. Astron. Soc. 307, 750–760 (1999).

    ADS  Google Scholar 

  • 20.

    Kraft, R. P. et al. The jet heated X-ray filament in the Centaurus A northern middle radio lobe. Astrophys. J. 698, 2036–2047 (2009).

    ADS  Google Scholar 

  • 21.

    Neff, S. G., Eilek, J. A. & Owen, F. N. The complex north transition region of Centaurus A: a galactic wind. Astrophys. J. 802, 88 (2015).

    ADS  Google Scholar 

  • 22.

    Struve, C., Oosterloo, T. A., Morganti, R. & Saripalli, L. Centaurus A: morphology and kinematics of the atomic hydrogen. Astron. Astrophys. 515, 67 (2010).

    ADS  Google Scholar 

  • 23.

    Junkes, N., Haynes, R. F., Harnett, J. I. & Jauncey, D. L. Radio polarization surveys of Centaurus A (NGC 5128). I. The complete radio source at lambda 6.3 cm. Astron. Astrophys. 269, 29–38 (1993).

    ADS  Google Scholar 

  • 24.

    Cooper, J. L., Bicknell, G. V., Sutherland, R. S. & Bland-Hawthorn, J. Starburst-driven galactic winds: filament formation and emission processes. Astrophys. J. 703, 330–347 (2009).

    ADS  Google Scholar 

  • 25.

    Gronke, M. & Oh, S. P. The growth and entrainment of cold gas in a hot wind. Mon. Not. R. Astron. Soc. 480, 111–115 (2018).

    ADS  Google Scholar 

  • 26.

    Santoro, F. et al. The outer filament of Centaurus A as seen by MUSE. Astron. Astrophys. 575, 4 (2015).

    Google Scholar 

  • 27.

    Hamer, S. et al. MUSE discovers perpendicular arcs in the inner filament of Centaurus A. Astron. Astrophys. 575, 3 (2015).

    Google Scholar 

  • 28.

    Crockett, R. M. et al. Triggered star formation in the inner filament of Centaurus A. Mon. Not. R. Astron. Soc. 421, 1603–1623 (2012).

    ADS  Google Scholar 

  • 29.

    Crnojević, D. et al. The extended halo of Centaurus A: uncovering satellites, streams, and substructures. Astrophys. J. 823, 19 (2016).

    ADS  Google Scholar 

  • 30.

    Wang, J., Hammer, F., Rejkuba, M., Crnojević, D. & Yang, Y. A recent major merger tale for the closest giant elliptical galaxy Centaurus A. Mon. Not. R. Astron. Soc. 498, 2766–2777 (2020).

    ADS  Google Scholar 

  • 31.

    Bowman, J. D. et al. Science with the Murchison Widefield Array. Publ. Astron. Soc. Aust. 30, 31 (2013).

    ADS  Google Scholar 

  • 32.

    Turner, W. et al. Technical Report SKA-TEL-SKO-0000008, SKA Phase 1 System Requirements Specification (SKA Organisation, 2016).

  • 33.

    Wayth, R. B. et al. The Phase II Murchison Widefield Array: design overview. Publ. Astron. Soc. Aust. 35, 33 (2018).

    ADS  Google Scholar 

  • 34.

    Beardsley, A. P. et al. Science with the Murchison Widefield Array: Phase I results and Phase II opportunities. Publ. Astron. Soc. Aust. 36, 50 (2019).

    ADS  Google Scholar 

  • 35.

    Offringa, A. R. et al. Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc. 405, 155–167 (2010).

    ADS  Google Scholar 

  • 36.

    Offringa, A. R., van de Gronde, J. J. & Roerdink, J. B. T. M. A morphological algorithm for improving radio-frequency interference detection. Astron. Astrophys. 539, 95 (2012).

    Google Scholar 

  • 37.

    Offringa, A. R. et al. Parametrizing epoch of reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array. Mon. Not. R. Astron. Soc. 458, 1057–1070 (2016).

    ADS  Google Scholar 

  • 38.

    Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    ADS  Google Scholar 

  • 39.

    van der Tol, S., Veenboer, B. & Offringa, A. R. Image domain gridding: a fast method for convolutional resampling of visibilities. Astron. Astrophys. 616, 27 (2018).

    Google Scholar 

  • 40.

    Sokolowski, M. et al. Calibration and stokes imaging with full embedded element primary beam model for the Murchison Widefield Array. Publ. Astron. Soc. Aust. 34, 62 (2017).

    ADS  Google Scholar 

  • 41.

    McKinley, B. et al. The jet/wind outflow in Centaurus A: a local laboratory for AGN feedback. Mon. Not. R. Astron. Soc. 474, 4056–4072 (2018).

    ADS  Google Scholar 

  • 42.

    Anderson, C. et al. The extraordinary linear polarisation structure of the southern Centaurus A lobe revealed by ASKAP. Galaxies 6, 127 (2018).

    ADS  Google Scholar 

  • 43.

    Veilleux, S. et al. MMTF: The Maryland-Magellan Tunable Filter. Astron. J. 139, 145–157 (2010).

    ADS  Google Scholar 

  • 44.

    Magnier, E. A. & Cuillandre, J.-C. The Elixir system: data characterization and calibration at the Canada–France–Hawaii Telescope. Publ. Astron. Soc. Pac. 116, 449–464 (2004).

    ADS  Google Scholar 

  • 45.

    Gwyn, S. D. J. MegaPipe: the MegaCam image stacking pipeline at the Canadian Astronomical Data Centre. Publ. Astron. Soc. Pac. 120, 212 (2008).

    ADS  Google Scholar 

  • 46.

    Bertin, E. et al. The TERAPIX pipeline. In Astronomical Society of the Pacific Conference Proceedings, Astronomical Data Analysis Software and Systems XI Vol. 281 (eds Bohlender, D. A. et al.) 228–237 (Astronomical Society of the Pacific, 2002).

  • 47.

    Bertin, E. & Arnouts, S. SExtractor: Software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996).

    ADS  Google Scholar 

  • 48.

    Turner, R. J. & Shabala, S. S. Energetics and lifetimes of local radio active galactic nuclei. Astrophys. J. 806, 59 (2015).

    ADS  Google Scholar 

  • 49.

    Eisenreich, M., Naab, T., Choi, E., Ostriker, J. P. & Emsellem, E. Active galactic nuclei feedback, quiescence and circumgalactic medium metal enrichment in early-type galaxies. Mon. Not. R. Astron. Soc. 468, 751–768 (2017).

    ADS  Google Scholar 

  • 50.

    Yoon, D. et al. Active galactic nucleus feedback in an elliptical galaxy with the most updated AGN physics. II. High angular momentum case. Astrophys. J. 864, 6 (2018).

    ADS  Google Scholar 

  • 51.

    Li, Y.-P. et al. Stellar and AGN feedback in isolated early-type galaxies: the role in regulating star formation and ISM properties. Astrophys. J. 866, 70 (2018).

    ADS  Google Scholar 

  • 52.

    Su, K.-Y. et al. Which AGN jets quench star formation in massive galaxies? Mon. Not. R. Astron. Soc. 507, 175–204 (2021).

    ADS  Google Scholar 

  • 53.

    Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195–204 (1952).

    ADS  MathSciNet  Google Scholar 

  • 54.

    Gaspari, M. et al. The X-ray halo scaling relations of supermassive black holes. Astrophys. J. 884, 169 (2019).

    ADS  Google Scholar 

  • 55.

    Best, P. N. & Heckman, T. On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 421, 1569–1582 (2012).

    ADS  Google Scholar 

  • 56.

    Hardcastle, M. Interpreting radiative efficiency in radio-loud AGNs. Nat. Astron. 2, 273–274 (2018).

    ADS  Google Scholar 

  • 57.

    Gaspari, M. The self-regulated AGN feedback loop: the role of chaotic cold accretion. Proc. Int. Astron. Union 11, 17–20 (2016).

    Google Scholar 

  • 58.

    Gaspari, M. Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. Astrophys. J. 854, 167 (2018).

    ADS  Google Scholar 

  • 59.

    Gaspari, M., Temi, P. & Brighenti, F. Raining on black holes and massive galaxies: the top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 466, 677–704 (2017).

    ADS  Google Scholar 

  • 60.

    Gaspari, M. Shaping the X-ray spectrum of galaxy clusters with AGN feedback and turbulence. Mon. Not. R. Astron. Soc. 451, 60–64 (2015).

    ADS  Google Scholar 

  • 61.

    Gaspari, M., Melioli, C., Brighenti, F. & D’Ercole, A. The dance of heating and cooling in galaxy clusters: three-dimensional simulations of self-regulated active galactic nuclei outflows. Mon. Not. R. Astron. Soc. 411, 349–372 (2011).

    ADS  Google Scholar 

  • 62.

    Kraft, R. P. et al. X-ray emission from the hot interstellar medium and southwest radio lobe of the nearby radio galaxy Centaurus A. Astrophys. J. 592, 129–146 (2003).

    ADS  Google Scholar 

  • 63.

    Heywood, I. et al. Inflation of 430-parsec bipolar radio bubbles in the Galactic Centre by an energetic event. Nature 573, 235–237 (2019).

    ADS  Google Scholar 

  • 64.

    Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind? Astron. J. 724, 1044–1082 (2010).

    Google Scholar 

  • 65.

    Dobler, G. et al. The Fermi haze: A gamma-ray counterpart to the microwave haze. Astron. J. 717, 825–842 (2010).

    Google Scholar 

  • 66.

    Carretti, E. et al. Giant magnetized outflows from the centre of the Milky Way. Nature 493, 66–69 (2013).

    ADS  Google Scholar 

  • 67.

    Finkbeiner, D. P. Microwave interstellar medium emission observed by the Wilkinson Microwave Anisotropy Probe. Astrophys. J. 614, 186–193 (2004).

    ADS  Google Scholar 

  • 68.

    Crocker, R. M., Bicknell, G. V., Taylor, A. M. & Carretti, E. A unified model of the Fermi bubbles, microwave haze, and polarized radio lobes: reverse shocks in the Galactic Center’s giant outflows. Astrophys. J. 808, 107 (2015).

    ADS  Google Scholar 

  • 69.

    Merloni, A., Nandra, K. & Predehl, P. eROSITAa’s X-ray eyes on the Universe. Nat. Astron. 4, 634–636 (2020).

    ADS  Google Scholar 

  • 70.

    Predehl, P. et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 588, 227–231 (2020).

    ADS  Google Scholar 

  • 71.

    Bogdán, Á. & Gilfanov, M. Soft band X/K luminosity ratios for gas-poor early-type galaxies. Astron. Astrophys. 512, 16 (2010).

    ADS  Google Scholar 

  • 72.

    Sądowski, A. & Gaspari, M. Kinetic and radiative power from optically thin accretion flows. Mon. Not. R. Astron. Soc. 468, 1398–1404 (2017).

    ADS  Google Scholar 

  • 73.

    Gaspari, M., Brighenti, F. & Temi, P. Mechanical AGN feedback: controlling the thermodynamical evolution of elliptical galaxies. Mon. Not. R. Astron. Soc. 424, 190–209 (2012).

    ADS  Google Scholar 

  • 74.

    Godfrey, L. E. H. & Shabala, S. S. Mutual distance dependence drives the observed jet-power–radio-luminosity scaling relations in radio galaxies. Mon. Not. R. Astron. Soc. 456, 1172–1184 (2016).

    ADS  Google Scholar 

  • 75.

    Eilek, J. A. The dynamic age of Centaurus A. New J. Phys. 16, 045001 (2014).

    ADS  Google Scholar 

  • 76.

    Wykes, S. et al. Mass entrainment and turbulence-driven acceleration of ultra-high energy cosmic rays in Centaurus A. Astron. Astrophys. 558, 19 (2013).

    Google Scholar 

  • 77.

    O’Sullivan, S. P. et al. Thermal plasma in the giant lobes of the radio galaxy Centaurus A. Astrophys. J. 764, 162 (2013).

    ADS  Google Scholar 

  • 78.

    Stawarz, Ł. et al. Giant lobes of Centaurus A radio galaxy observed with the Suzaku X-ray satellite. Astrophys. J. 766, 48 (2013).

    ADS  Google Scholar 

  • 79.

    Schiminovich, D., van Gorkom, J. H., van der Hulst, J. M. & Kasow, S. Discovery of neutral hydrogen associated with the diffuse shells of NGC 5128 (Centaurus A). Astrophys. J. Lett. 423, 101 (1994).

    ADS  Google Scholar 

  • 80.

    Graham, J. A. & Price, R. M. The gaseous filaments in the northeast halo region of NGC 5128 (Centaurus A). Astrophys. J. 247, 813–822 (1981).

    ADS  Google Scholar 

  • 81.

    Morganti, R. et al. The nature of the optical filaments in Centaurus A. Evidence for a beamed ionizing continuum. Mon. Not. R. Astron. Soc. 249, 91–112 (1991).

    ADS  Google Scholar 

  • 82.

    Santoro, F. et al. The jet-ISM interaction in the outer filament of Centaurus A. Astron. Astrophys. 574, 89 (2015).

    Google Scholar 

  • 83.

    Sutherland, R. S., Bicknell, G. V. & Dopita, M. A. Shock excitation of the emission-line filaments in Centaurus A. Astrophys. J. 414, 510 (1993).

    ADS  Google Scholar 

  • 84.

    Gaspari, M., Ruszkowski, M. & Sharma, P. Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94 (2012).

    ADS  Google Scholar 

  • 85.

    Kraft, R. P. et al. Evidence for nonhydrostatic gas motions in the hot interstellar medium of Centaurus A. Astrophys. J. 677, 97 (2008).

    Google Scholar 

  • 86.

    Król, D. Ł., Marchenko, V., Ostrowski, M. & Stawarz, Ł. An analysis of soft X-ray structures at kiloparsec distances from the active nucleus of Centaurus A galaxy. Astrophys. J. 903, 107 (2020).

    ADS  Google Scholar 

  • 87.

    Israel, F. P. et al. The outflow of gas from the Centaurus A circumnuclear disk. Atomic spectral line maps from Herschel/PACS and APEX. Astron. Astrophys. 599, 53 (2017).

    Google Scholar 

  • 88.

    Veilleux, S., Cecil, G. & Bland-Hawthorn, J. Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005).

    ADS  Google Scholar 

  • 89.

    DeBoer, D. R. et al. Australian SKA Pathfinder: a high-dynamic range wide-field of view survey telescope. Proc. IEEE 97, 1507–1521 (2009).

    ADS  Google Scholar 

  • 90.

    Hotan, A. W. et al. The Australian Square Kilometre Array Pathfinder: system architecture and specifications of the Boolardy engineering test array. Publ. Astron. Soc. Aust. 31, 41 (2014).

    ADS  Google Scholar 

  • 91.

    Camilo, F. et al. Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR. Astron. J. 856, 180 (2018).

    Google Scholar 

  • 92.

    Jonas, J. et al. The MeerKAT radio telescope. In Proc. of MeerKAT Science: On the Pathway to the SKA Proceedings of Science, Vol. 277 (eds Taylor, R. et al.) Article ID 001 (SISSA, 2018).

  • 93.

    Tingay, S. J., Preston, R. A. & Jauncey, D. L. The subparsec-scale structure and evolution of Centaurus A. II. Continued very long baseline array monitoring. Astron. J. 122, 1697–1706 (2001).

    ADS  Google Scholar 

  • 94.

    Jones, D. L. et al. Discovery of a sub-parsec radio counterjet in the nucleus of Centaurus A. Astrophys. J. 466, 63 (1996).

    Google Scholar 

  • 95.

    Tombesi, F. et al. Ultrafast outflows in radio-loud active galactic nuclei. Mon. Not. R. Astron. Soc. 443, 2154–2182 (2014).

    ADS  Google Scholar 

  • 96.

    Nesvadba, N. P. H. et al. Gas kinematics in powerful radio galaxies at z ~ 2: energy supply from star formation, AGN, and radio jets. Astron. Astrophys. 600, 121 (2017).

    Google Scholar 

  • 97.

    Morganti, R. Radio jets clearing the way through galaxies: the view from HI and molecular gas. Proc. Int. Astron. Union 313, 283–288 (2015).

    Google Scholar 

  • 98.

    Bicknell, G. V. et al. AGN feedback by relativistic jets. Proc. Int. Astron Union 313, 101–107 (2015).

    Google Scholar 

  • 99.

    van Gorkom, J. H. et al. H i absorption in radio elliptical galaxies—evidence for infall. Astron. J. 97, 708–719 (1989).

    ADS  Google Scholar 

  • 100.

    van der Hulst, J. M. et al. The H i absorption in NGC 5128 (Centaurus A). Astrophys. J. 264, 37–41 (1983).

    Google Scholar 

  • 101.

    Best, P. N. The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback. Mon. Not. R. Astron. Soc. 362, 25–40 (2005).

    ADS  Google Scholar 

  • 102.

    Neumayer, N. The supermassive black hole at the heart of Centaurus A: revealed by the kinematics of gas and stars. Publ. Astron. Soc. Aust. 27, 449–456 (2010).

    ADS  Google Scholar 

  • 103.

    Cooper, B. F. C., Price, R. M. & Cole, D. J. A study of the decimetric emission and polarization of Centaurus A. Aust. J. Phys. 18, 589–626 (1965).

    ADS  Google Scholar 

  • 104.

    McNamara, B. R. et al. An energetic AGN outburst powered by a rapidly spinning supermassive black hole or an accreting ultramassive black hole. Astrophys. J. 698, 594–605 (2009).

    ADS  Google Scholar 

  • 105.

    McDonald, M. et al. Observational evidence for enhanced black hole accretion in giant elliptical galaxies. Astrophys. J. 908, 85 (2021).

    ADS  Google Scholar 

  • 106.

    Donnari, M. et al. The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics. Mon. Not. R. Astron. Soc. 485, 4817–4840 (2019).

    ADS  Google Scholar 

  • 107.

    Zinger, E. et al. Ejective and preventative: the IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies. Mon. Not. R. Astron. Soc. 499, 768–792 (2020).

    ADS  Google Scholar 

  • 108.

    Bassini, L. et al. Black hole mass of central galaxies and cluster mass correlation in cosmological hydro-dynamical simulations. Astron. Astrophys. 630, 144 (2019).

    Google Scholar 

  • 109.

    Truong, N., Pillepich, A. & Werner, N. Correlations between supermassive black holes and hot gas atmospheres in IllustrisTNG and X-ray observations. Mon. Not. R. Astron. Soc. 501, 2210–2230 (2021).

    ADS  Google Scholar 

  • 110.

    Mitchell, P. D. et al. Galactic outflow rates in the EAGLE simulations. Mon. Not. R. Astron. Soc. 494, 3971–3997 (2020).

    ADS  Google Scholar 

  • 111.

    Davé, R. et al. SIMBA: cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 486, 2827–2849 (2019).

    ADS  Google Scholar 

  • 112.

    Beckmann, R. S. et al. Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation. Mon. Not. R. Astron. Soc. 472, 949–965 (2017).

    ADS  Google Scholar 

  • 113.

    Tremmel, M. et al. Introducing ROMULUSC: a cosmological simulation of a galaxy cluster with an unprecedented resolution. Mon. Not. R. Astron. Soc. 483, 3336–3362 (2019).

    ADS  Google Scholar 

  • 114.

    Marinacci, F. et al. First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 480, 5113–5139 (2018).

    ADS  Google Scholar 

  • 115.

    Naiman, J. P. et al. First results from the IllustrisTNG simulations: a tale of two elements—chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. 477, 1206–1224 (2018).

    ADS  Google Scholar 

  • 116.

    Nelson, D. et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality. Mon. Not. R. Astron. Soc. 475, 624–647 (2018).

    ADS  Google Scholar 

  • 117.

    Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    ADS  Google Scholar 

  • 118.

    Springel, V. et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475, 676–698 (2018).

    ADS  Google Scholar 

  • 119.

    Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).

    ADS  Google Scholar 

  • 120.

    Brennan, R. et al. Momentum-driven winds from radiatively efficient black hole accretion and their impact on galaxies. Astrophys. J. 860, 14 (2018).

    ADS  Google Scholar 

  • 121.

    Gofford, J. et al. The Suzaku view of highly ionized outflows in AGN—I. Statistical detection and global absorber properties. Mon. Not. R. Astron. Soc. 430, 60–80 (2013).

    ADS  Google Scholar 

  • 122.

    Gofford, J. et al. The Suzaku view of highly ionized outflows in AGN—II. Location, energetics and scalings with bolometric luminosity. Mon. Not. R. Astron. Soc. 451, 4169–4182 (2015).

    ADS  Google Scholar 

  • 123.

    Tombesi, F. et al. Feeding and feedback in the powerful radio galaxy 3C 120. Astrophys. J. 838, 16 (2017).

    ADS  Google Scholar 

  • 124.

    Harrison, C. M. et al. The KMOS AGN survey at high redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN. Mon. Not. R. Astron. Soc. 456, 1195–1220 (2016).

    ADS  Google Scholar 

  • 125.

    Schmidt, M., Schneider, D. P. & Gunn, J. E. Spectroscopic CCD surveys for quasars at large redshift IV: evolution of the luminosity function from quasars detected by their Lyman-alpha emission. Astron. J. 110, 68–77 (1995).

    ADS  Google Scholar 

  • 126.

    Leung, G. C. K. et al. The MOSDEF survey: the prevalence and properties of galaxy-wide AGN-driven outflows at z ~ 2. Astrophys. J. 849, 48 (2017).

    ADS  Google Scholar 

  • 127.

    Circosta, C. et al. SUPER I: toward an unbiased study of ionized outflows in z ~ 2 active galactic nuclei: survey overview and sample characterization. Astron. Astrophys. 620, 82 (2018).

    Google Scholar 

  • 128.

    Kakkad, D. et al. SUPER II: spatially resolved ionised gas kinematics and scaling relations in z ~ 2 AGN host galaxies. Astron. Astrophys. 642, 147 (2020).

    Google Scholar 

  • 129.

    Bischetti, M. et al. Widespread QSO-driven outflows in the early Universe. Astron. Astrophys. 630, 59 (2019).

    Google Scholar 

  • 130.

    Croston, J. H. et al. High-energy particle acceleration at the radio-lobe shock of Centaurus A. Mon. Not. R. Astron. Soc. 395, 1999–2012 (2009).

    ADS  Google Scholar 

  • 131.

    Keel, W. C. et al. Optical detection of star formation in a cold dust cloud in the counterjet direction of Centaurus A. Astron. J. 157, 66 (2019).

    ADS  Google Scholar 

  • 132.

    O’Sullivan, E., Ponman, T. J. & Collins, R. S. X-ray scaling properties of early-type galaxies. Mon. Not. R. Astron. Soc. 340, 1375–1399 (2003).

    ADS  Google Scholar 

  • Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    More Story on Source:

    *here*

    Multi-scale feedback and feeding in the closest radio galaxy Centaurus A

    Dillard's - The Style of Your Life.

    By allaboutian

    open profile for all

    Related Posts

    960 people 👁️ing this randomly Tip #1: Your resume is your first impression. Make it…

    Just a moment…

    784 people 👁️ing this randomly Just a moment… Please enable Cookies and reload the page.…

    The University of Manchester | Jobs

    720 people 👁️ing this randomly The University of Manchester | Jobs Sackville Street, Manchester Try…