lunar solar power: Topics by Science.gov

140 people 👁️ing this randomly

lunar solar power: Topics by Science.gov

  • Solar Wind Electron Interaction with the Dayside Lunar Surface and Crustal Magnetic Fields: Evidence for Precursor Effects

    NASA Technical Reports Server (NTRS)

    Halekas, Jasper S.; Poppe, A.; Delory, G. T.; Farrell, W. M.; Horanyi, M.

    2012-01-01

    Electron distributions measured by Lunar Prospector above the dayside lunar surface in the solar wind often have an energy dependent loss cone, inconsistent with adiabatic magnetic reflection. Energy dependent reflection suggests the presence of downward parallel electric fields below the spacecraft, possibly indicating the presence of a standing electrostatic structure. Many electron distributions contain apparent low energy (solar wind electrons, possibly indicating streaming and/or whistler instabilities. The Moon may therefore influence solar wind plasma well upstream from its surface. Magnetic anomaly interactions and/or non-monotonic near surface potentials provide the most likely candidates to produce the observed precursor effects, which may help ensure quasi-neutrality upstream from the Moon.

  • Solar and lunar tidal variabilities in GPS-TEC and geomagnetic field variations: Seasonal as well as during the sudden stratospheric warming of 2010

    NASA Astrophysics Data System (ADS)

    Sridharan, S.

    2017-04-01

    The Global Positioning System (GPS) deduced total electron content (TEC) data at 15°N (geomagnetic), which is the northern crest region of equatorial ionization anomaly, are used to study solar and lunar tidal variabilities during the years 2008 and 2009 and also during the 2009-2010 winter, when a major sudden stratospheric warming (SSW) event has occurred. The diurnal and semidiurnal tidal amplitudes show semiannual variation with maximum amplitudes during February-March and September-November, whereas terdiurnal tide is larger during April-September. They show significant longitudinal variability with larger (smaller) amplitudes over 250°E-150°E (200°E-250°E). Lunar semidiurnal tidal amplitudes show sporadic enhancements during northern winter months and negligible amplitudes during northern summer months. They also show notable longitudinal variabilities. The solar migrating tides DW1 and SW2 show semiannual variation with larger amplitudes during spring equinox months, whereas TW3 maximizes during northern summer. DW2 shows larger amplitudes during summer months. During the SSW, except TW3, the migrating tides DW1 and SW2 show considerable enhancements. Among solar nonmigrating tides, SW1, TW2, and DS0 show larger enhancements. Solar tides in TEC and equatorial electrojet strength over Tirunelveli vary with the time scale of 60 days during October 2009-March 2010 similar to ozone mass mixing ratio at 10 hPa, and this confirms the vital role of ozone in tidal variabilities in ionospheric parameters. Lunar tidal amplitudes in changes in horizontal component of geomagnetic field (ΔH) are larger over Tirunelveli, a station near dip equator. Solar semidiurnal tides in ΔH have larger amplitudes than lunar tides over polar stations, Mawson and Godhavn.Plain Language SummaryIn this paper, the variations of solar and lunar tides in a few ionospheric parameters during the years 2008 and 2009 and during a disturbed

  • Proceedings of the 39th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole – Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 – Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous

  • Sensitivity of Lunar Resource Economic Model to Lunar Ice Concentration

    NASA Technical Reports Server (NTRS)

    Blair, Brad; Diaz, Javier

    2002-01-01

    Lunar Prospector mission data indicates sufficient concentration of hydrogen (presumed to be in the form of water ice) to form the basis for lunar in-situ mining activities to provide a source of propellant for near-Earth and solar system transport missions. A model being developed by JPL, Colorado School of Mines, and CSP, Inc. generates the necessary conditions under which a commercial enterprise could earn a sufficient rate of return to develop and operate a LEO propellant service for government and commercial customers. A combination of Lunar-derived propellants, L-1 staging, and orbital fuel depots could make commercial LEO/GEO development, inter-planetary missions and the human exploration and development of space more energy, cost, and mass efficient.

  • Lunar Obliquity History Revisited

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Bills, B.; Paige, D.

    2007-12-01

    In preparation for a LRO (Lunar Reconnaissance Orbiter) related study of possible lunar polar volatiles, we re- examined the lunar orbital and rotational history, with primary focus on the obliquity history of the Moon. Though broad models have been made of lunar obliquity, a cohesive obliquity history was not found. We report on a new model of lunar obliquity including secular changes in inclination of the lunar orbit, tidal dissipation, lunar moments of inertia, and details for periods outside of the stable configurations known as Cassini states. For planets, the obliquity, or angle between the spin and orbit poles, is the dominant control on incident solar radiation. For planetary satellites, the radiation pattern can be more complex, as it depends on the mutual inclinations of three poles; the satellite spin and orbit poles, and the planetary heliocentric orbit pole. Presently, the lunar spin pole and orbit pole co-precess about the ecliptic pole, in a stable situation known as a Cassini state. As a result, permanently shadowed regions near the poles are expected to exist and act as cold traps, retaining water or other volatiles delivered to the surface by comets, solar wind, or via outgassing of the lunar interior. However, tidally driven secular changes in the lunar semimajor axis cause changes in precession rates of the spin and orbit poles, and thereby alter or destabilize the Cassini states. Only one prograde Cassini state exists at present (state 2). In the standard Cassini state model of Ward [1975], two other such states would have existed in the past (states 1 and 4) with the Moon starting in the low obliquity state 1, and remaining there until states 1 and 4 merged and disappear, at roughly half the present Earth-Moon distance. At that point, the Moon transitioned into the currently occupied state 2, and briefly attained very high obliquity values during the transition, and then stayed in state 2 until the present. If correct, this model implies that

  • Lunar Get Away Special (GAS) spacecraft

    NASA Technical Reports Server (NTRS)

    Nock, K. T.; Aston, G.; Salazar, R. P.; Stella, P. M.

    1987-01-01

    A new approach to the resumption of Lunar missions is discussed which relies upon Shuttle Get-Away-Special Canisters for launch and solar electric ion propulsion for slow orbit transfer to low Lunar orbit. The technique of orbit transfer is outlined along with a summary of a mission profile for a first mission which could carry a Gamma Ray Spectrometer. System design constraints are discussed followed by a description of the low mass spacecraft concept which has been developed. Particular emphasis is placed upon describing the small solar electric, xenon ion propulsion system.

  • Cryogenic reactant storage for lunar base regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    1989-01-01

    There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC’s for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV’s. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC’s, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.

  • Dust Grain Charge above the Lunar terminator

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Richterova, Ivana; Nemecek, Zdenek; Safrankova, Jana; Pavlu, Jiri; Vysinka, Marek

    Interaction of a lunar surface with the solar wind and magnetosphere leads to its charging by several processes as photoemission, a collection of primary particles, and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a shielding of solar light and solar wind ions by hills, craters, and boulders that can locally influence the surface potential. Moreover, a presence of a plasma wake can strongly affect this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred volts (night side). An electric field above the charged surface can lead to a levitation of dust grains as it has been observed by several spacecraft and by astronauts during Apollo missions. Although charging and transport of dust grains above the lunar surface are in the center of interest for many years, these phenomena are not still completely understood. We present calculation of an equilibrium potential of dust grains above the lunar surface. We focus on a terminator area during the Earth’s plasma sheet crossing. We use the secondary electron emission model for dust grains which takes into account an influence of the grain size, material, and surface roughness and findings from laboratory experiments with charging of lunar dust simulants by an electron beam.

  • Concentrating Solar Power Projects – KaXu Solar One | Concentrating Solar

    Science.gov Websites

    Power | NREL KaXu Solar One This page provides information on KaXu Solar One, a concentrating . Status Date: April 14, 2015 Project Overview Project Name: KaXu Solar One Country: South Africa Location

  • Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  • Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Astrophysics Data System (ADS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-06-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  • Terrestrial nitrogen and noble gases in lunar soils.

    PubMed

    Ozima, M; Seki, K; Terada, N; Miura, Y N; Podosek, F A; Shinagawa, H

    2005-08-04

    The nitrogen in lunar soils is correlated to the surface and therefore clearly implanted from outside. The straightforward interpretation is that the nitrogen is implanted by the solar wind, but this explanation has difficulties accounting for both the abundance of nitrogen and a variation of the order of 30 per cent in the 15N/14N ratio. Here we propose that most of the nitrogen and some of the other volatile elements in lunar soils may actually have come from the Earth’s atmosphere rather than the solar wind. We infer that this hypothesis is quantitatively reasonable if the escape of atmospheric gases, and implantation into lunar soil grains, occurred at a time when the Earth had essentially no geomagnetic field. Thus, evidence preserved in lunar soils might be useful in constraining when the geomagnetic field first appeared. This hypothesis could be tested by examination of lunar farside soils, which should lack the terrestrial component.

  • Concentrating Solar Power Projects – Ilanga I | Concentrating Solar Power |

    Science.gov Websites

    Fluid Type: Thermal oil Solar-Field Inlet Temp: 293°C Solar-Field Outlet Temp: 393°C Power Block Turbine Capacity (Gross): 100.0 MW Turbine Capacity (Net): 100.0 MW Output Type: Steam Rankine Thermal Storage Storage Type: 2-tank indirect Storage Capacity: 4.5 hours Thermal Storage Description: Molten salt

  • Space manufacturing in the construction of solar power satellites

    NASA Astrophysics Data System (ADS)

    Ruth, J.; Westphal, W.

    This paper deals with ongoing research work concerning energy budget and cost of the solar Satellite Power System (SPS). The fundamental model of such a total system including ground and space facilities, transportation vehicles, power satellites and rectennas is presented. The main purpose of this model is to examine the applicability of different construction scenarios to allow comparison under nearly identical constraints. Using this model in a first attempt the blankets—meaning the main part of the space segment by weight, energy investment needs and cost—are chosen representatively for the energy and cost comparison of two construction alternatives of the same SPS concept. These construction alternatives are defined just by ground and space based manufacturing of the solar blankets, while all other subsystems, operations and the transportation profiles are considered to be kept the same. It can be shown that the energy “payback” time does not only depend on the SPS concept selected but also very much on the construction and implementation scenario. The cost comparison of these alternative approaches presents not very significant differences but advantages for the space manufacturing option with potential higher differences for a less conservative approach which may apply benefits of space manufacturing meaning, for example, considerable mass savings in space. Some preliminary results are discussed and an outlook is given over the next steps to be investigated, comprising the extension of the fundamental model to include use of lunar raw materials.

  • AC/DC Power Systems with Applications for future Lunar/Mars base and Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chowdhury, Badrul H.

    2005-01-01

    ABSTRACT The Power Systems branch at JSC faces a number of complex issues as it readies itself for the President’s initiative on future space exploration beyond low earth orbit. Some of these preliminary issues – those dealing with electric power generation and distribution on board Mars-bound vehicle and that on Lunar and Martian surface may be summarized as follows: Type of prime mover – Because solar power may not be readily available on parts of the Lunar/Mars surface and also during the long duration flight to Mars, the primary source of power will most likely be nuclear power (Uranium fuel rods) with a secondary source of fuel cell (Hydrogen supply). The electric power generation source – With nuclear power being the main prime mover, the electric power generation source will most likely be an ac generator at a yet to be determined frequency. Thus, a critical issue is whether the generator should generate at constant or variable frequency. This will decide what type of generator to use – whether it is a synchronous machine, an asynchronous induction machine or a switched reluctance machine. The type of power distribution system – the distribution frequency, number of wires (3- wire, 4-wire or higher), and ac/dc hybridization. Building redundancy and fault tolerance in the generation and distribution sub-systems so that the system is safe; provides 100% availability to critical loads; continues to operate even with faulted sub-systems; and requires minimal maintenance. This report descril_es results of a summer faculty fellowship spent in the Power Systems Branch with the specific aim of investigating some of the lessons learned in electric power generation and usage from the terrestrial power systems industry, the aerospace industry as well as NASA’s on-going missions so as to recommend novel surface and vehicle-based power systems architectures in support of future space exploration initiatives. A hybrid ac/dc architecture with source side and load side

  • Solar Wind Implantation into Lunar Regolith: Hydrogen Retention in a Surface with Defects

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Hurley, D. M.; Zimmerman, M. I.

    2014-01-01

    Solar wind protons are implanted directly into the top 100 nm of the lunar near-surface region, but can either quickly diffuse out of the surface or be retained, depending upon surface temperature and the activation energy, U, associated with the implantation site. In this work, we explore the distribution of activation energies upon implantation and the associated hydrogen-retention times; this for comparison with recent observation of OH on the lunar surface. We apply a Monte Carlo approach: for simulated solar wind protons at a given local time, we assume a distribution of U values with a central peak, U(sub c) and width, U(sub w), and derive the fraction retained for long periods in the near-surface. We find that surfaces characterized by a distribution with predominantly large values of U (greater than 1 eV) like that expected at defect sites will retain implanted H (to likely form OH). Surfaces with the distribution predominantly at small values of U (less than 0.2 eV) will quickly diffuse away implanted H. However, surfaces with a large portion of activation energies between 0.3 eV less than U less than 0.9 eV will tend to be H-retentive in cool conditions but transform into H-emissive surfaces when warmed (as when the surface rotates into local noon). These mid-range activation energies give rise to a diurnal effect with diffusive loss of H at noontime.

  • Inherently Safe Fission Power System for Lunar Outposts

    NASA Astrophysics Data System (ADS)

    Schriener, Timothy M.; El-Genk, Mohamed S.

    2013-09-01

    This paper presents the Solid Core-Sectored Compact Reactor (SC-SCoRe) and power system for future lunar outposts. The power system nominally provides 38 kWe continuously for 21 years, employs static components and has no single point failures in reactor cooling or power generation. The reactor core has six sectors, each has a separate pair of primary and secondary loops with liquid NaK-56 working fluid, thermoelectric (TE) power conversion and heat-pipes radiator panels. The electromagnetic (EM) pumps in the primary and secondary loops, powered with separate TE power units, ensure operation reliability and passive decay heat removal from the reactor after shutdown. The reactor poses no radiological concerns during launch, and remains sufficiently subcritical, with the radial reflector dissembled, when submerged in wet sand and the core flooded with seawater, following a launch abort accident. After 300 years of storage below grade on the Moon, the total radioactivity in the post-operation reactor drops below 164 Ci, a low enough radioactivity for a recovery and safe handling of the reactor.

  • The Moon as a Recorder of Organic Evolution in the Early Solar System: A Lunar Regolith Analog Study

    PubMed Central

    Court, Richard W.; Crawford, Ian A.; Jones, Adrian P.; Joy, Katherine H.; Sephton, Mark A.

    2015-01-01

    Abstract The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth’s surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter–containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable. Key Words: Moon—Regolith—Organic preservation—Biomarkers. Astrobiology 15, 154–168. PMID:25615648

  • Lunar electrical conductivity, permeability,and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate and electrical conductivity profile for the moon, and those profiles were used to calculate the lunar temperature for an assumed lunar material of olivine. Simultaneous measurements by magnetometers on the lunar surface and in orbit around the moon were use to construct a whole-moon hysteresis curve, from which the global lunar magnetic permeability is determined. Total iron abundance (sum of iron in the ferromagnetic and paramagnetic states) was calculated for two assumed compositional models of the lunar interior. Other lunar models with an iron core and with a shallow iron-rich layer also discussed in light of the measured global lunar permeability. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Velocities and thicknesses of the earth’s magnetopause and bow shock were also estimated from simultaneous magnetometer measurements.

  • Lunar Laser Ranging: Glorious Past And A Bright Future

    NASA Astrophysics Data System (ADS)

    Shelus, Peter J.

    Lunar Laser Ranging (LLR), a part of the NASA Apollo program, has beenon-going for more than 30 years. It provides the grist for a multi-disciplinarydata analysis mill. Results exist for solid Earth sciences, geodesy and geodynamics,solar system ephemerides, terrestrial and celestial reference frames, lunar physics,general relativity and gravitational theory. Combined with other data, it treatsprecession of the Earth”s spin axis, lunar induced nutation, polar motion/Earthrotation, Earth orbit obliquity to the ecliptic, intersection of the celestial equatorwith the ecliptic, luni-solar solid body tides, lunar tidal deceleration, lunar physicaland free librations, structure of the moon and energy dissipation in the lunar interior.LLR provides input to lunar surface cartography and surveying, Earth station and lunar retroreflector location and motion, mass of the Earth-moon system, lunar and terrestrial gravity harmonics and Love numbers, relativistic geodesic precession, and the equivalence principle of general relativity. With the passive nature of the reflectors and steady improvement in observing equipment and data analysis, LLR continues to provide state-of-the-art results. Gains are steady as the data-base expands. After more than 30 years, LLR remains the only active Apollo experiment. It is important to recognize examples of efficient and cost effective progress of research. LLR is just such an example.

  • Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    More Story on Source:

    *here*

    lunar solar power: Topics by Science.gov

    Dillard's - The Style of Your Life.

    By allaboutian

    open profile for all

    Related Posts

    976 people 👁️ing this randomly Tip #1: Your resume is your first impression. Make it…

    Just a moment…

    801 people 👁️ing this randomly Just a moment… Please enable Cookies and reload the page.…

    The University of Manchester | Jobs

    733 people 👁️ing this randomly The University of Manchester | Jobs Sackville Street, Manchester Try…