Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole

512 people 👁️ing this randomly

Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole

  • Predehl, P. et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 588, 227–231 (2020).

    ADS  Google Scholar 

  • Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind? Astrophys. J. 724, 1044–1082 (2010).

    ADS  Google Scholar 

  • Finkbeiner, D. P. Microwave interstellar medium emission observed by the Wilkinson Microwave Anisotropy Probe. Astrophys. J. 614, 186–193 (2004).

    ADS  Google Scholar 

  • Planck Collaboration. Planck intermediate results. IX. Detection of the Galactic haze with Planck. Astron. Astrophys. 554, A139 (2013).

    Google Scholar 

  • Carretti, E. et al. Giant magnetized outflows from the centre of the Milky Way. Nature 493, 66–69 (2013).

    ADS  Google Scholar 

  • Bland-Hawthorn, J. & Cohen, M. The large-scale bipolar wind in the Galactic Center. Astrophys. J. 582, 246–256 (2003).

    ADS  Google Scholar 

  • Bland-Hawthorn, J. et al. The large-scale ionization cones in the Galaxy. Astrophys. J. 886, 45 (2019).

    ADS  Google Scholar 

  • Yang, H. Y., Ruszkowski, M. & Zweibel, E. Unveiling the origin of the Fermi bubbles. Galaxies 6, 29 (2018).

    ADS  Google Scholar 

  • Ackermann, M. et al. The spectrum and morphology of the Fermi bubbles. Astrophys. J. 793, 64 (2014).

    ADS  Google Scholar 

  • Crocker, R. M., Bicknell, G. V., Taylor, A. M. & Carretti, E. A unified model of the Fermi bubbles, microwave haze, and polarized radio lobes: reverse shocks in the Galactic Center’s giant outflows. Astrophys. J. 808, 107 (2015).

    ADS  Google Scholar 

  • Mou, G., Yuan, F., Bu, D., Sun, M. & Su, M. Fermi bubbles inflated by winds launched from the hot accretion flow in Sgr A*. Astrophys. J. 790, 109 (2014).

    ADS  Google Scholar 

  • Guo, F. & Mathews, W. G. The Fermi bubbles. I. Possible evidence for recent AGN jet activity in the galaxy. Astrophys. J. 756, 181 (2012).

    ADS  Google Scholar 

  • Yang, H.-Y. K., Ruszkowski, M., Ricker, P. M., Zweibel, E. & Lee, D. The Fermi bubbles: supersonic active galactic nucleus jets with anisotropic cosmic-ray diffusion. Astrophys. J. 761, 185 (2012).

    ADS  Google Scholar 

  • Yang, H.-Y. K., Ruszkowski, M. & Zweibel, E. The Fermi bubbles: gamma-ray, microwave and polarization signatures of leptonic AGN jets. Mon. Not. R. Astron. Soc. 436, 2734–2746 (2013).

    ADS  Google Scholar 

  • Yang, H.-Y. K. & Ruszkowski, M. The spatially uniform spectrum of the Fermi bubbles: the leptonic active galactic nucleus jet scenario. Astrophys. J. 850, 2 (2017).

    ADS  Google Scholar 

  • Cheng, K.-S., Chernyshov, D. O., Dogiel, V. A., Ko, C.-M. & Ip, W.-H. Origin of the Fermi bubble. Astrophys. J. Lett. 731, L17 (2011).

    ADS  Google Scholar 

  • Sarkar, K. C., Nath, B. B. & Sharma, P. Clues to the origin of Fermi bubbles from O viii/O vii line ratio. Mon. Not. R. Astron. Soc. 467, 3544–3555 (2017).

    ADS  Google Scholar 

  • Mertsch, P. & Petrosian, V. Fermi bubbles from stochastic acceleration of electrons in a Galactic outflow. Astron. Astrophys. 622, A203 (2019).

    ADS  Google Scholar 

  • Abeysekara, A. U. et al. Search for very high-energy gamma rays from the northern Fermi bubble region with HAWC. Astrophys. J. 842, 85 (2017).

    ADS  Google Scholar 

  • Guo, F., Mathews, W. G., Dobler, G. & Oh, S. P. The Fermi bubbles. II. The potential roles of viscosity and cosmic-ray diffusion in jet models. Astrophys. J. 756, 182 (2012).

    ADS  Google Scholar 

  • Berkhuijsen, E. M., Haslam, C. G. T. & Salter, C. J. Are the Galactic loops supernova remnants? Astron. Astrophys. 14, 252–262 (1971).

    ADS  Google Scholar 

  • Das, K. K. et al. Constraining the distance to the North Polar Spur with Gaia DR2. Mon. Not. R. Astron. Soc. 498, 5863–5872 (2020).

    ADS  Google Scholar 

  • Sofue, Y. Bipolar hypershell Galactic Center starburst model: further evidence from ROSAT data and new radio and X-ray simulations. Astrophys. J. 540, 224–235 (2000).

    ADS  Google Scholar 

  • Kataoka, J. et al. X-ray and gamma-ray observations of the Fermi bubbles and NPS/Loop I structures. Galaxies 6, 27 (2018).

    ADS  Google Scholar 

  • LaRocca, D. M. et al. An analysis of the North Polar Spur using HaloSat. Astrophys. J. 904, 54 (2020).

    ADS  Google Scholar 

  • Panopoulou, G. V., Dickinson, C., Readhead, A. C. S., Pearson, T. J. & Peel, M. W. Revisiting the distance to radio Loops I and IV using Gaia and radio/optical polarization data. Astrophys. J. 922, 210 (2021).

    ADS  Google Scholar 

  • Ezoe, Y., Ohashi, T. & Mitsuda, K. High-resolution X-ray spectroscopy of astrophysical plasmas with X-ray microcalorimeters. Rev. Mod. Plasma Phys. 5, 4 (2021).

    ADS  Google Scholar 

  • Barret, D. et al. The Athena space X-ray observatory and the astrophysics of hot plasma. Astron. Nachr. 341, 224–235 (2020).

    ADS  Google Scholar 

  • Barret, D. et al. The Athena X-ray Integral Field Unit (X-IFU). In Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 10699 (eds den Herder, J.-W. A. et al.) 106991G (SPIE (Society of Photo-Optical Instrumentation Engineers), 2018).

  • Zhang, R. & Guo, F. Simulating the Fermi bubbles as forward shocks driven by AGN jets. Astrophys. J. 894, 117 (2020).

    ADS  Google Scholar 

  • Totani, T. A RIAF interpretation for the past higher activity of the Galactic Center black hole and the 511 keV annihilation emission. Publ. Astron. Soc. Jpn 58, 965–977 (2006).

    ADS  Google Scholar 

  • Fox, A. J. et al. Probing the Fermi bubbles in ultraviolet absorption: a spectroscopic signature of the Milky Way’s biconical nuclear outflow. Astrophys. J. Lett. 799, L7 (2015).

    ADS  Google Scholar 

  • Miller, M. J. & Bregman, J. N. The interaction of the Fermi bubbles with the Milky Way’s hot gas halo. Astrophys. J. 829, 9 (2016).

    ADS  Google Scholar 

  • Bordoloi, R. et al. Mapping the nuclear outflow of the Milky Way: studying the kinematics and spatial extent of the northern Fermi bubble. Astrophys. J. 834, 191 (2017).

    ADS  Google Scholar 

  • Ponti, G. et al. An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre. Nature 567, 347–350 (2019).

    ADS  Google Scholar 

  • Heywood, I. et al. Inflation of 430-parsec bipolar radio bubbles in the Galactic Centre by an energetic event. Nature 573, 235–237 (2019).

    ADS  Google Scholar 

  • Paumard, T. et al. The two young star disks in the central parsec of the galaxy: properties, dynamics, and formation. Astrophys. J. 643, 1011–1035 (2006).

    ADS  Google Scholar 

  • Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).

    ADS  Google Scholar 

  • Ashley, T. et al. Mapping outflowing gas in the Fermi bubbles: a UV absorption survey of the Galactic nuclear wind. Astrophys. J. 898, 128 (2020).

    ADS  Google Scholar 

  • Fryxell, B. et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273–334 (2000).

    ADS  Google Scholar 

  • Lee, D. & Deane, A. E. An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics. J. Comput. Phys. 228, 952–975 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  • Strong, A. W. & Moskalenko, I. V. Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J. 509, 212–228 (1998).

    ADS  Google Scholar 

  • Crocker, R. M., Jones, D. I., Melia, F., Ott, J. & Protheroe, R. J. A lower limit of 50 microgauss for the magnetic field near the Galactic Centre. Nature 463, 65–67 (2010).

    ADS  Google Scholar 

  • Arnaud, K. A. XSPEC: the first ten years. In ASP Conference Series Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17 (Astronomical Society of the Pacific, 1996).

  • Miller, M. J. & Bregman, J. N. The structure of the Milky Way’s hot gas halo. Astrophys. J. 770, 118 (2013).

    ADS  Google Scholar 

  • Teodoro, E. M. D. et al. Blowing in the Milky Way wind: neutral hydrogen clouds tracing the Galactic nuclear outflow. Astrophys. J. 855, 33 (2018).

    ADS  Google Scholar 

  • Fox, A. J. et al. Kinematics of the Magellanic Stream and implications for its ionization. Astrophys. J. 897, 23 (2020).

    ADS  Google Scholar 

  • Turk, M. J. et al. yt: a multi-code analysis toolkit for astrophysical simulation data. Astrophys. J. Suppl. Ser. 192, 9 (2011).

    ADS  Google Scholar 

  • Su, M. & Finkbeiner, D. P. Evidence for gamma-ray jets in the Milky Way. Astrophys. J. 753, 61 (2012).

    ADS  Google Scholar 

  • Kataoka, J. et al. Suzaku observations of the diffuse X-ray emission across the Fermi bubbles’ edges. Astrophys. J. 779, 57 (2013).

    ADS  Google Scholar 

  • Fang, T. & Jiang, X. High resolution X-ray spectroscopy of the local hot gas along the 3C 273 sightline. Astrophys. J. Lett. 785, L24 (2014).

    ADS  Google Scholar 

  • Sutherland, R. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. 88, 253 (1993).

    Google Scholar 

  • Kataoka, J. et al. Global structure of isothermal diffuse X-ray emission along the Fermi bubbles. Astrophys. J. 807, 77 (2015).

    ADS  Google Scholar 

  • Rosswog, S. & Brüggen, M. Introduction to High-Energy Astrophysics (Cambridge University Press, 2011).

  • Blandford, R., Meier, D. & Readhead, A. Relativistic jets from active galactic nuclei. Annu. Rev. Astron. Astrophys. 57, 467–509 (2019).

    ADS  Google Scholar 

  • Lagage, P. O. & Cesarsky, C. J. The maximum energy of cosmic rays accelerated by supernova shocks. Astron. Astrophys. 125, 249–257 (1983).

    ADS  MATH  Google Scholar 

  • Zweibel, E. G. Cosmic-ray history and its implications for galactic magnetic fields. Astrophys. J. 587, 625–637 (2003).

    ADS  Google Scholar 

  • Sironi, L. & Spitkovsky, A. Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21 (2014).

    ADS  Google Scholar 

  • Sarkar, K. C. Possible connection between the asymmetry of the North Polar Spur and Loop I and Fermi bubbles. Mon. Not. R. Astron. Soc. 482, 4813–4823 (2019).

    ADS  Google Scholar 

  • Cecil, G., Wagner, A. Y., Bland-Hawthorn, J., Bicknell, G. V. & Mukherjee, D. Tracing the Milky Way’s vestigial nuclear jet. Astrophys. J. 922, 254 (2021).

    ADS  Google Scholar 

  • Fiacconi, D., Sijacki, D. & Pringle, J. E. Galactic nuclei evolution with spinning black holes: method and implementation. Mon. Not. R. Astron. Soc. 477, 3807–3835 (2018).

    ADS  Google Scholar 

  • Bardeen, J. M. & Petterson, J. A. The Lense–Thirring effect and accretion disks around Kerr black holes. Astrophys. J. Lett. 195, L65 (1975).

    ADS  Google Scholar 

  • Dobler, G. & Finkbeiner, D. P. Extended anomalous foreground emission in the WMAP three-year data. Astrophys. J. 680, 1222–1234 (2008).

    ADS  Google Scholar 

  • Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    More Story on Source:

    *here*

    Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole

    Dillard's - The Style of Your Life.

    By allaboutian

    open profile for all

    Related Posts

    988 people 👁️ing this randomly Tip #1: Your resume is your first impression. Make it…

    Just a moment…

    845 people 👁️ing this randomly Just a moment… Please enable Cookies and reload the page.…

    The University of Manchester | Jobs

    745 people 👁️ing this randomly The University of Manchester | Jobs Sackville Street, Manchester Try…