Categories
allPost

State-of-the-art energetic and morphological modelling of the launching site of the M87 jet

583 people 👁️ing this randomly

State-of-the-art energetic and morphological modelling of the launching site of the M87 jet

  • 1.

    Kovalev, Y. Y., Lister, M. L., Homan, D. C. & Kellermann, K. I. The inner jet of the radio galaxy M87. Astrophys. J. Lett. 668, L27–L30 (2007).

    ADS  Article  Google Scholar 

  • 2.

    Asada, K. & Nakamura, M. The structure of the M87 jet: a transition from parabolic to conical streamlines. Astrophys. J. Lett. 745, L28 (2012).

    ADS  Article  Google Scholar 

  • 3.

    Walker, R. C., Hardee, P. E., Davies, F. B., Ly, C. & Junor, W. The structure and dynamics of the subparsec jet in M87 based on 50 VLBA observations over 17 years at 43 GHz. Astrophys. J. 855, 128 (2018).

    ADS  Article  Google Scholar 

  • 4.

    Kim, J.-Y. et al. The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale. Astron. Astrophys. 616, A188 (2018).

    ADS  Article  Google Scholar 

  • 5.

    Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    ADS  Article  Google Scholar 

  • 6.

    Event Horizon Telescope Collaboration et al. First M87 Event Horizon Telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. Lett. 875, L5 (2019).

  • 7.

    Narayan, R., Igumenshchev, I. V. & Abramowicz, M. A. Magnetically arrested disk: an energetically efficient accretion flow. Publ. Astron. Soc. Jpn 55, L69–L72 (2003).

    ADS  Article  Google Scholar 

  • 8.

    Narayan, R., Sa̧dowski, A., Penna, R. F. & Kulkarni, A. K. GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. Mon. Not. R. Astron. Soc. 426, 3241–3259 (2012).

    ADS  Article  Google Scholar 

  • 9.

    Kim, J.-Y. et al. Long-term millimeter VLBI monitoring of M 87 with KVN at milliarcsecond resolution: nuclear spectrum. Astron. Astrophys. 610, L5 (2018).

    ADS  Article  Google Scholar 

  • 10.

    Junor, W. & Biretta, J. A. The radio jet in 3C274 at 0.01 pc resolution. Astron. J. 109, 500–506 (1995).

    ADS  Article  Google Scholar 

  • 11.

    Ball, D., Sironi, L. & Özel, F. Electron and proton acceleration in trans-relativistic magnetic reconnection: dependence on plasma beta and magnetization. Astrophys. J. 862, 80 (2018).

    ADS  Article  Google Scholar 

  • 12.

    Xiao, F. Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas. Plasma Phys. Control. Fusion 48, 203–213 (2006).

    ADS  Article  Google Scholar 

  • 13.

    Davelaar, J. et al. Modeling non-thermal emission from the jet-launching region of M 87 with adaptive mesh refinement. Astron. Astrophys. 632, A2 (2019).

    Article  Google Scholar 

  • 14.

    Mizuno, Y. et al. Comparison of the ion-to-electron temperature ratio prescription: GRMHD simulations with electron thermodynamics. Mon. Not. R. Astron. Soc. 506, 741–758 (2021).

    ADS  Article  Google Scholar 

  • 15.

    Younsi, Z., Porth, O., Mizuno, Y., Fromm, C. M. & Olivares, H. Modelling the polarised emission from black holes on event horizon-scales. In Proc. International Astronomical Union, Symposium S342, Perseus in Sicily: From Black Hole to Cluster Outskirts Vol. 14 (eds Asada, K. et al.) 9–12 (Cambridge Univ. Press, 2020).

  • 16.

    Mościbrodzka, M., Falcke, H., Shiokawa, H. & Gammie, C. F. Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: application to Sagittarius A*. Astron. Astrophys. 570, A7 (2014).

    ADS  Article  Google Scholar 

  • 17.

    Doeleman, S. S. et al. Jet-launching structure resolved near the supermassive black hole in M87. Science 338, 355–358 (2012).

    ADS  Article  Google Scholar 

  • 18.

    Perlman, E. S. et al. Deep 10 micron imaging of M87. Astrophys. J. 561, L51–L54 (2001).

    ADS  Article  Google Scholar 

  • 19.

    Lonsdale, C. J., Doeleman, S. S. & Phillips, R. B. A 3 millimeter VLBI continuum source survey. Astron. J. 116, 8–12 (1998).

    ADS  Article  Google Scholar 

  • 20.

    Whysong, D. & Antonucci, R. Thermal emission as a test for hidden nuclei in nearby radio galaxies. Astrophys. J. 602, 116–122 (2004).

    ADS  Article  Google Scholar 

  • 21.

    Akiyama, K. et al. 230 GHz VLBI observations of M87: event-horizon-scale structure during an enhanced very-high-energy γ-ray state in 2012. Astrophys. J. 807, 150 (2015).

    ADS  Article  Google Scholar 

  • 22.

    Prieto, M. A., Fernández-Ontiveros, J. A., Markoff, S., Espada, D. & González-Martín, O. The central parsecs of M87: jet emission and an elusive accretion disc. Mon. Not. R. Astron. Soc. 457, 3801–3816 (2016).

    ADS  Article  Google Scholar 

  • 23.

    Hada, K. et al. Pilot KaVA monitoring on the M 87 jet: confirming the inner jet structure and superluminal motions at sub-pc scales. Publ. Astron. Soc. Jpn 69, 71 (2017).

    ADS  Article  Google Scholar 

  • 24.

    An, T., Sohn, B. W. & Imai, H. Capabilities and prospects of the East Asia Very Long Baseline Interferometry Network. Nat. Astron. 2, 118–125 (2018).

    ADS  Article  Google Scholar 

  • 25.

    Lister, M. L. et al. MOJAVE. XV. VLBA 15 GHz total intensity and polarization maps of 437 parsec-scale AGN jets from 1996 to 2017. Astrophys. J. Suppl. Ser. 234, 12 (2018).

    ADS  Article  Google Scholar 

  • 26.

    Nakamura, M. et al. Parabolic jets from the spinning black hole in M87. Astrophys. J. 868, 146 (2018).

    ADS  Article  Google Scholar 

  • 27.

    Mizuno, Y. et al. The current ability to test theories of gravity with black hole shadows. Nat. Astron. 2, 585–590 (2018).

    ADS  Article  Google Scholar 

  • 28.

    Porth, O. et al. The black hole accretion code. Comput. Astrophys. Cosmol. 4, 1 (2017).

    ADS  Article  Google Scholar 

  • 29.

    Rezzolla, L & Zanotti, O. Relativistic Hydrodynamics (Oxford Univ. Press, 2013).

  • 30.

    Olivares, H. et al. Constrained transport and adaptive mesh refinement in the Black Hole Accretion Code. Astron. Astrophys. 629, A61 (2019).

    Article  Google Scholar 

  • 31.

    Font, J. A. & Daigne, F. On the stability of thick accretion disks around black holes. Astrophys. J. 581, L23–L26 (2002).

    ADS  Article  Google Scholar 

  • 32.

    Shiokawa, H., Dolence, J. C., Gammie, C. F. & Noble, S. C. Global general relativistic magnetohydrodynamic simulations of black hole accretion flows: a convergence study. Astrophys. J. 744, 187 (2012).

    ADS  Article  Google Scholar 

  • 33.

    Gold, R. et al. Verification of radiative transfer schemes for the EHT. Astrophys. J. 897, 148 (2020).

    ADS  Article  Google Scholar 

  • 34.

    Younsi, Z., Wu, K. & Fuerst, S. V. General relativistic radiative transfer: formulation and emission from structured tori around black holes. Astron. Astrophys. 545, A13 (2012).

    ADS  Article  Google Scholar 

  • 35.

    Event Horizon Telescope Collaborationet al. First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019).

    ADS  Article  Google Scholar 

  • 36.

    Mościbrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H. & Leung, P. K. Radiative models of SGR A* from GRMHD simulations. Astrophys. J. 706, 497–507 (2009).

    ADS  Article  Google Scholar 

  • 37.

    Chael, A., Narayan, R. & Johnson, M. D. Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc. 486, 2873–2895 (2019).

    ADS  Article  Google Scholar 

  • 38.

    Nemmen, R. The spin of M87*. Astrophys. J. Lett. 880, L26 (2019).

    ADS  Article  Google Scholar 

  • 39.

    Feng, J. & Wu, Q. Constraint on the black hole spin of M87 from the accretion-jet model. Mon. Not. R. Astron. Soc. 470, 612–616 (2017).

    ADS  Article  Google Scholar 

  • 40.

    Event Horizon Telescope Collaborationet al. First M87 Event Horizon Telescope results. VII. Polarization of the ring. Astrophys. J. Lett. 910, L12 (2021).

    ADS  Article  Google Scholar 

  • 41.

    Event Horizon Telescope Collaborationet al. First M87 Event Horizon Telescope results. VIII. Magnetic field structure near the event horizon. Astrophys. J. Lett. 910, L13 (2021).

    ADS  Article  Google Scholar 

  • 42.

    Mertens, F., Lobanov, A. P., Walker, R. C. & Hardee, P. E. Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii. Astron. Astrophys. 595, A54 (2016).

    ADS  Article  Google Scholar 

  • Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    Try Adsterra Earnings, it’s 100% Authentic to make money more and more.

    More Story on Source:

    *here*

    State-of-the-art energetic and morphological modelling of the launching site of the M87 jet

    Dillard's - The Style of Your Life.

    By allaboutian

    open profile for all

    Related Posts

    960 people 👁️ing this randomly Tip #1: Your resume is your first impression. Make it…

    Just a moment…

    784 people 👁️ing this randomly Just a moment… Please enable Cookies and reload the page.…

    The University of Manchester | Jobs

    720 people 👁️ing this randomly The University of Manchester | Jobs Sackville Street, Manchester Try…